PyWavelets Documentation
Release 0.2.0

Filip Wasilewski

July 21, 2012

CONTENTS

PyWavelets Documentation, Release 0.2.0

Note: This documetation covers PyWavelets 0.2 release. Documetation for the 0.1.6 release is still available at
http://www.pybytes.com/pywavelets/0.1.6/.

Contents:

CONTENTS 1

http://www.pybytes.com/pywavelets/0.1.6/

PyWavelets Documentation, Release 0.2.0

2 CONTENTS

CHAPTER
ONE

OVERVIEW

PyWavelets is a free Open Source wavelet transform software for Python programming language. It is written in
Python, Pyrex/Cython and C for a mix of easy and powerful high-level interface and the best performance.

PyWavelets is very easy to start with and use. Just install the package, open the Python interactive shell and type:

>>> import pywt
>>> cA, cD = pywt.dwt ([1, 2, 3, 4], ’dbl’)

Voila! Computing wavelet transforms never before has been so simple :)

1.1 Main features

The main features of PyWavelets are:

¢ 1D and 2D Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)

1D and 2D Wavelet Packet decomposition and reconstruction

* Approximating wavelet and scaling functions

* Over seventy built-in wavelet filters and custom wavelets supported
* Single and double precision calculations supported

* Results compatibility with Matlab Wavelet Toolbox™

1.2 Requirements

PyWavelets is a Python programming language package and requires Python 2.4, 2.5 or 2.6 installed. The only external
requirement is a recent version of NumPy numeric array module.

1.3 Download

Current release, including source and binary release for Windows, is available for download from the Python Package
Index at:

http://pypi.python.org/pypi/PyWavelets/

http://python.org/
http://python.org/
http://www.scipy.org/
http://pypi.python.org/pypi/PyWavelets/

PyWavelets Documentation, Release 0.2.0

The latest development version can be found in the wavelets.scipy.org’s SVN source code repository:

svn co http://wavelets.scipy.org/svn/multiresolution/pywt/trunk pywt

1.4 Install

The most convenient way to install PyWavelets is to use the setuptools® Easy Install manager:

easy_install -U PyWavelets

In order to build PyWavelets from source, a working C compiler and a recent version of Cython is required.
After completing the build environment, open the shell prompt, go to the PyWavelets source code directory and type:

python setup.py install

See Also:
Development notes section contains more information on building from source code.

For Windows users there is a standard binary installer available for download from the Python Package Index. Just
execute it to install the package on your computer.

Also binary packages for several Linux distributors are maintained by Open Source community contributors. Please
consult your favourite package manager tool for python-wavelets, python-pywt or similar package name.

Note: If you happen to maintain a PyWavelets Linux binary package please put information and your name on the
wiki download page or contact me and I will update the page. Thanks for help!

To verify the installation process try running tests and examples from the tests and demo directories included in the
source distribution. Note that most of the examples relies on the matplotlib plotting package.

1.5 License

PyWavelets is a free Open Source software available under the MIT license terms.

1.6 Contact

Post your suggestions and guestions to PyWavelets discussions group (pywavelets @ googlegroups.com). You can also
contact me directly at en@ig.ma. Comments, bug reports and fixes are welcome.

There’s also a wiki and trac system available at the wavelets.scipy.org site to improve documentation, post cookbook
recipes or submit enhancement proposals and bug reports.

4 Chapter 1. Overview

http://wavelets.scipy.org/svn/multiresolution/pywt/trunk
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/EasyInstall#using-easy-install
http://www.cython.org/
http://pypi.python.org/pypi/PyWavelets/
http://wavelets.scipy.org/moin/Download
http://wavelets.scipy.org/moin/Download
http://projects.scipy.org/wavelets/browser/pywt/trunk/tests/
http://projects.scipy.org/wavelets/browser/pywt/trunk/demo/
http://matplotlib.sourceforge.net
http://groups.google.com/group/pywavelets
mailto:pywavelets@googlegroups.com
mailto:en@ig.ma
http://wavelets.scipy.org

CHAPTER
TWO

APl REFERENCE

2.1 Wavelets

2.1.1 Wavelet families ()
pywt .families ()
Returns a list of available built-in wavelet families. Currently the built-in families are:
*Haar (haar)
eDaubechies (db)
*Symlets (sym)
*Coiflets (coif)
*Biorthogonal (bior)
*Reverse biorthogonal (rbio)
*“Discrete” FIR approximation of Meyer wavelet (dmey)
Example:

>>> import pywt
>>> print pywt.families()
["haar’, 'db’, ’sym’, ’coif’, ’'bior’, ’'rbio’, ’‘dmey’]

2.1.2 Built-in wavelets - wavelist ()

pywt .wavelist ([family])
The wavelist () function returns a list of names of the built-in wavelets.

If the family name is None then names of all the built-in wavelets are returned. Otherwise the function returns
names of wavelets that belong to the given family.

Example:

>>> import pywt
>>> print pywt.wavelist (’/coif’)
["coifl’, "coif2’, ’"coif3’, ’'"coifd’, ’"coifb’]

Custom user wavelets are also supported through the Wavelet object constructor as described below.

PyWavelets Documentation, Release 0.2.0

2.1.3 wavelet object

class pywt .Wavelet (name[, ﬁlter_bank:None])
Describes properties of a wavelet identified by the specified wavelet name. In order to use a built-in wavelet the
name parameter must be a valid wavelet name from the pywt .wavelist () list.

Custom Wavelet objects can be created by passing a user-defined filters set with the filter_bank parameter.
Parameters
* name — Wavelet name
« filter_bank — Use a user supplied filter bank instead of a built-in Wavelet.

The filter bank object can be a list of four filters coefficients or an object with £i1ter_ bank attribute, which
returns a list of such filters in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

Note: The get_filters_coeffs () method is kept for compatibility with the previous versions of Py-
Wavelets, but may be removed in a future version of the package.

Wavelet objects can also be used as a base filter banks. See section on using custom wavelets for more informa-
tion.

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet ('dbl’)

name
Wavelet name.

short_name
Short wavelet name.

dec_lo
Decomposition filter values.

dec_hi
Decomposition filter values.

rec_lo
Reconstruction filter values.

rec_hi
Reconstruction filter values.

dec_len
Decomposition filter length.

rec_len
Reconstruction filter length.

filter bank
Returns filters list for the current wavelet in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

The get_filters_coeffs () method is deprecated.

6 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

inverse_filter bank
Returns list of reverse wavelet filters coefficients. The mapping from the filter_coeffs list is as follows:

[rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-11]

The get_reverse_filters_coeffs () method is deprecated.

short_family name
Wavelet short family name

family name
Wavelet family name

orthogonal
Set if wavelet is orthogonal

biorthogonal
Set if wavelet is biorthogonal

symmetry
asymmetric, near symmetric, symmetric

vanishing moments_psi
Number of vanishing moments for the wavelet function

vanishing moments_phi
Number of vanishing moments for the scaling function

Example:

>>> import pywt

>>> wavelet = pywt.Wavelet ('dbl’)
>>> print wavelet

Wavelet dbl

Family name: Daubechies
Short name: db
Filters length: 2
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric
>>> print wavelet.dec_lo, wavelet.dec_hi
[0.70710678118654757, 0.70710678118654757] [-0.70710678118654757, 0.70710678118654757]

>>> print wavelet.rec_lo, wavelet.rec_hi
[0.70710678118654757, 0.70710678118654757] [0.70710678118654757, —-0.70710678118654757]

Approximating wavelet and scaling functions - Wavelet .wavefun ()

Wavelet .wavefun (level)
Changed in version 0.2: The time (space) localisation of approximation function points was added. The
wavefun () method can be used to calculate approximations of scaling function (phi) and wavelet function
(psi) at the given level of refinement.

For orthogonal wavelets returns approximations of scaling function and wavelet function with corresponding
x-grid coordinates:

[phi, psi, x] = wavelet.wavefun (level)

Example:

2.1. Wavelets 7

PyWavelets Documentation, Release 0.2.0

>>> import pywt
>>> wavelet = pywt.Wavelet ('db2’)
>>> phi, psi, x = wavelet.wavefun (level=5)

For other (biorthogonal but not orthogonal) wavelets returns approximations of scaling and wavelet
function both for decomposition and reconstruction and corresponding x-grid coordinates:

[phi_d, psi_d, phi_r, psi_r, x] = wavelet.wavefun (level)

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet ('bior3.5")
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)

See Also:

You can find live examples of wavefun () usage and images of all the built-in wavelets on the Wavelet Prop-
erties Browser page.

2.1.4 Using custom wavelets

PyWavelets comes with a 1ong 1ist of the most popular wavelets built-in and ready to use. If you need to use a
specific wavelet which is not included in the list it is very easy to do so. Just pass a list of four filters or an object with
a filter_bank attribute as a filter_bank argument to the Wave let constructor.

The filters list, either in a form of a simple Python list or returned via the filter bank attribute, must be in the
following order:

* lowpass decomposition filter
* highpass decomposition filter
* lowpass reconstruction filter
* highpass reconstruction filter
just as for the filter_ bank attribute of the Wavelet class.
The Wavelet object created in this way is a standard Wavelet instance.

The following example illustrates the way of creating custom Wavelet objects from plain Python lists of filter coeffi-
cients and a filter bank-like objects.

Example:

>>> import pywt, math
>>> ¢ = math.sqgrt (2) /2

>>> dec_lo, dec_hi, rec_lo, rec_hi = [c¢, c], [-c¢, c], [c, c]l, [c, -c]
>>> filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
>>> myWavelet = pywt.Wavelet (name="myHaarWavelet", filter_bank=filter_lbank)
>>>
>>> class HaarFilterBank (object) :
@property

def filter_ bank(self):
c = math.sqrt(2)/2

dec_lo, dec_hi, rec_lo, rec_hi = [c¢, c], [-¢, c], [c, c]l, [c, -c]
C return [dec_lo, dec_hi, rec_lo, rec_hi]
>>> filter_bank = HaarFilterBank ()

>>> myOtherWavelet = pywt.Wavelet (name="myHaarWavelet", filter_bank=filter_bank)

8 Chapter 2. API Reference

http://wavelets.pybytes.com
http://wavelets.pybytes.com

PyWavelets Documentation, Release 0.2.0

2.2 Signal extension modes

Because the most common and practical way of representing digital signals in computer science is with finite arrays
of values, some extrapolation of the input data has to be performed in order to extend the signal before computing the
Discrete Wavelet Transform using the cascading filter banks algorithm.

Depending on the extrapolation method, significant artifacts at the signal’s borders can be introduced during that
process, which in turn may lead to inaccurate computations of the DWT at the signal’s ends.

PyWavelets provides several methods of signal extrapolation that can be used to minimize this negative effect:
* zpd - zero-padding - signal is extended by adding zero samples:

0 0 | x1 x2 ... xn | 0 O

¢ cpd - constant-padding - border values are replicated:

xl x1 | x1 X2 ... Xn | Xn xXn

e sym - symmetric-padding - signal is extended by mirroring samples:

x2 x1 | x1 x2 ... xn | xn xn—1

* ppd - periodic-padding - signal is treated as a periodic one:
xn-1 xn | x1 x2 ... xn | x1 x2
* spl - smooth-padding - signal is extended according to the first derivatives calculated on the edges
(straight line)

DWT performed for these extension modes is slightly redundant, but ensures perfect reconstruction. To receive the
smallest possible number of coefficients, computations can be performed with the periodization mode:

* per - periodization - is like periodic-padding but gives the smallest possible number of decompo-
sition coefficients. /DWT must be performed with the same mode.

Example:

>>> import pywt
>>> print pywt.MODES.modes
["zpd", "cpd’, ’'sym’, ‘ppd’, "spl’, "per’]

Notice that you can use any of the following ways of passing wavelet and mode parameters:

>>> import pywt
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], "db2’", ’"spl’)
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], pywt.Wavelet ('db2’), pywt.MODES.spl)

Note: Extending data in context of PyWavelets does not mean reallocation of the data in computer’s physical memory
and copying values, but rather computing the extra values only when they are needed. This feature saves extra memory
and CPU resources and helps to avoid page swapping when handling relatively big data arrays on computers with low
physical memory.

2.3 Discrete Wavelet Transform (DWT)

Wavelet transform has recently become a very popular when it comes to analysis, de-noising and compression of sig-
nals and images. This section describes functions used to perform single- and multilevel Discrete Wavelet Transforms.

2.2. Signal extension modes 9

PyWavelets Documentation, Release 0.2.0

2.3.1 Single level dwt

pywt .dwt (data, wavelet[, mode= ’sym’])
The dwt () function is used to perform single level, one dimensional Discrete Wavelet Transform.

(cA, cD) = dwt (data, wavelet, mode=’'sym’)

Parameters

 data — Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details.

The transform coefficients are returned as two arrays containing approximation (cA) and detail (cD) coefficients
respectively. Length of returned arrays depends on the selected signal extension mode - see the signal extension
modes section for the list of available options and the dwt__coeff_len () function for information on getting
the expected result length:

ofor all modes except periodization:

len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)

for periodization mode ("per"):

len(cA) == len(cD) == ceil(len(data) / 2)

Example:

>>> import pywt

>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], "dbl")
>>> print cA

[2.12132034 4.94974747 7.77817459]

>>> print cD

[-0.70710678 -0.70710678 -0.70710678]

2.3.2 Multilevel decomposition using wavedec

pywt .wavedec (data, wavelet, mode="sym’, level=None)
The wavedec () function performs 1D multilevel Discrete Wavelet Transform decomposition of given signal
and returns ordered list of coefficients arrays in the form:

[cA_n, cD_n, cb_n-1, ..., cb2, cD1],
where n denotes the level of decomposition. The first element (cA_n) of the result is approximation coefficients
array and the following elements (cD_n - cD_1I) are details coefficients arrays.

Parameters

 data — Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

10 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details.

* level — Number of decomposition steps to performe. If the level is None, then the full
decomposition up to the level computed with dwt_max_level () function for the given
data and wavelet lengths is performed.

Example:

>>> import pywt

>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], "dbl’, level=2)
>>> cA2, cD2, cDl = coeffs

>>> print cD1

[-0.70710678 -0.70710678 -0.70710678 -0.70710678]

>>> print cD2

[-2. =2.]

>>> print cA2

[5. 13.]

2.3.3 Partial Discrete Wavelet Transform data decomposition downcoef

pywt .downcoef (part, data, wavelet[, mode= ’sym’[, level=1]])
Similar to dwt (), but computes only one set of coefficients. Useful when you need only approximation or only
details at the given level.

Parameters

* part — decomposition type. For a computes approximation coefficients, for d - details
coefficients.

* data — Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details.

* level — Number of decomposition steps to perform.

2.3.4 Maximum decomposition level - dwt_max_level

pywt .dwt_max_level (data_len, filter_len)
The dwt_max_1level () function can be used to compute the maximum useful level of decomposition for the
given input data length and wavelet filter length.

The returned value equals to:
floor (log(data_len/ (filter_len-1)) / log(2))

Although the maximum decomposition level can be quite high for long signals, usually smaller values are chosen
depending on the application.

2.3. Discrete Wavelet Transform (DWT) 11

PyWavelets Documentation, Release 0.2.0

The filter_len can be either an int or Wave let object for convenience.
Example:

>>> import pywt

>>> w = pywt.Wavelet ("symb’)

>>> print pywt.dwt_max_level (data_len=1000, filter_len=w.dec_len)
6

>>> print pywt.dwt_max_level (1000, w)

6

2.3.5 Result coefficients length - dwt_coeff_ len

pywt .dwt_coeff len (data_len, filter_len, mode)

Based on the given input data length, Wavelet decomposition filter length and signal extension mode, the
dwt_coeff_len () function calculates length of resulting coefficients arrays that would be created while perform-
ing dwt () transform.

For periodization mode this equals:

ceil (data_len / 2)

which is the lowest possible length guaranteeing perfect reconstruction.
For other modes:

floor ((data_len + filter_len - 1) / 2)

The filter_len can be either an int or Wave let object for convenience.

2.4 Inverse Discrete Wavelet Transform (IDWT)

2.4.1 Single level idwt

pywt .idwt (cA, cD, wavelet[, mode= ’sym’[, correct_size:O]])
The idwt () function reconstructs data from the given coefficients by performing single level Inverse Discrete
Wavelet Transform.

Parameters
* cA — Approximation coefficients.
* ¢D - Detail coefficients.

« wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when DWT was performed in periodization mode.

* correct_size — Typically, cA and cD coefficients lists must have equal lengths in order to
perform IDWT. Setting correct_size to True allows cA to be greater in size by one element
compared to the c¢D size. This option is very useful when doing multilevel decomposition
and reconstruction (as for example with the wavedec () function) of non-dyadic length
signals when such minor differences can occur at various levels of IDWT.

Example:

12 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

>>> import pywt

>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], "db2’, ’"spl’)
>>> print pywt.idwt (cA, cD, "db2’, ’spl’)

[1. 2. 3. 4. 5. 6.]

One of the neat features of idwt () is that one of the cA and ¢D arguments can be set to None. In that situation
the reconstruction will be performed using only the other one. Mathematically speaking, this is equivalent to
passing a zero-filled array as one of the arguments.

Example:

>>> import pywt

>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], "db2’, ’"spl’)
>>> A = pywt.idwt (cA, None, ’"db2’, ’spl’)

>>> D = pywt.idwt (None, cD, ’"db2’, ’'spl’)

>>> print A + D

[1. 2. 3. 4. 5. 6.]

Multilevel reconstruction using waverec

pywt .waverec (coeffs, wavelet[, mode= ’sym’])
Performs multilevel reconstruction of signal from the given list of coefficients.

Parameters
* coeffs — Coefficients list must be in the form like returned by wavedec () decomposition
function, which is:
[cAn, c¢Dn, cDn-1, ..., cD2, cD1]
e wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details.

Example:

>>> import pywt

>>> coeffs = pywt.wavedec([1l,2,3,4,5,6,7,8], "db2", level=2)
>>> print pywt.waverec (coeffs, "db2’)

[1. 2. 3. 4. 5. 6. 7. 8.]

Direct reconstruction with upcoef
pywt .upcoef (part, coeffs, wavelet[, level:l[, take:O]])
Direct reconstruction from coefficients.
Parameters
 part — Defines the input coefficients type:
— ‘a’ - approximations reconstruction is performed
— ‘d’ - details reconstruction is performed

¢ coeffs — Coefficients array to reconstruct.

2.4. Inverse Discrete Wavelet Transform (IDWT) 13

PyWavelets Documentation, Release 0.2.0

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* level — If level value is specified then a multilevel reconstruction is performed (first recon-
struction is of type specified by part and all the following ones with part type a)

* take — If rake is specified then only the central part of length equal to the fake parameter
value is returned.

Example:

>>> import pywt

>>> data = [1,2,3,4,5,6]

>>> (cA, cD) = pywt.dwt (data, ’"db2", ’"spl’)

>>> print pywt.upcoef(’a’, cA, 'db2’) + pywt.upcoef(’d’, cD, "db2’")

[-0.25 -0.4330127 1. 2. 3. 4. 5.
6. 1.78589838 —-1.03108891]

>>> n = len(data)

>>> print pywt.upcoef(’a’,chA,’db2’,take=n) + pywt.upcoef(’d’,cD,’db2’,take=n)
[1. 2. 3. 4. 5. 6.]

2.5 2D Forward and Inverse Discrete Wavelet Transform

2.5.1 Single level dwt2

pywt .dwt2 (data, wavelet[, mode= ’sym’])
The dwt 2 () function performs single level 2D Discrete Wavelet Transform.

Parameters
 data — 2D input data.

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when DWT was performed in periodization mode.

Returns one average and three details 2D coefficients arrays. The coefficients arrays are organized in tuples in
the following form:

(cA, (cH, cV, cD))

where cA, cH, cV, c¢D denote approximation, horizontal detail, vertical detail and diagonal detail coefficients
respectively.

The relation to the other common data layout where all the approximation and details coefficients are stored in one big
2D array is as follows:

14 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

PyWavelets does not follow this pattern because of pure practical reasons of simple access to particular type of the
output coefficients.

Example:

>>> import pywt, numpy

>>> data = numpy.ones((4,4), dtype=numpy.float64)
>>> coeffs = pywt.dwt2 (data, ’haar’)

>>> cA, (cH, cV, cD) coeffs

>>> print cA

[r 2. 2.]

[2. 2.]]
>>> print cV
[[0. 0.]

[0. 0.]]

2.5.2 Single level idwt2

pywt .idwt2 (coeffs, wavelet[, mode= ’sym’])
The idwt2 () function reconstructs data from the given coefficients set by performing single level 2D Inverse
Discrete Wavelet Transform.

Parameters

* coeffs — A tuple with approximation coefficients and three details coefficients 2D arrays like
from dwt2 ():

(cA, (cH, cVv, cD))

e wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when the dwt () was performed in the periodization mode.

Example:

>>> import pywt, numpy

>>> data numpy.array ([[1,2], [3,4]1], dtype=numpy.float64)
>>> coeffs = pywt.dwt2 (data, ’"haar’)

>>> print pywt.idwt2 (coeffs, ’"haar’)

2.5.3 2D multilevel decomposition using wavedec2

pywt .wavedec2 (data, wavelet[, mode= ’sym’[, level=N0ne]])
Performs multilevel 2D Discrete Wavelet Transform decomposition and returns coefficients list:

[cAn, (cHn, cVn, cDn), ., (cH1l, cVl, cD1)]

where n denotes the level of decomposition and cA, cH, ¢V and ¢D are approximation, horizontal detail, vertical
detail and diagonal detail coefficients arrays respectively.

Parameters

2.5. 2D Forward and Inverse Discrete Wavelet Transform 15

PyWavelets Documentation, Release 0.2.0

 data — Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details.

* level — Decomposition level. This should not be greater than the reasonable maximum value
computed with the dwt_max_level () function for the smaller dimension of the input
data.

Example:

>>> import pywt, numpy

>>> coeffs pywt .wavedec?2 (numpy.ones ((8,8)), ’'dbl’, level=2)
>>> cA2, (cH2, c¢V2, cD2), (cH1l, cVl, cDl) = coeffs

>>> print cA2

2.5.4 2D multilevel reconstruction using waverec2

pywt .waverec2 (coeffs, wavelet[, mode="sym’])
Performs multilevel reconstruction from the given coefficients set.

Parameters

* coeffs — Coefficients set must be in the form like that from wavedec?2 () decomposition:
[cAn, (cHn, c¢cVn, c¢cDn), ..., (cH1l, cVl, cDl)]

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* mode — Signal extension mode to deal with the border distortion problem. See MODES for
details.

Example:

>>> import pywt, numpy

>>> coeffs = pywt.wavedec2 (numpy.ones((4,4)), ’'dbl’")

>>> print "levels:", len(coeffs)-1

levels: 2

>>> print pywt.waverec?2 (coeffs, ’“dbl’)

[1. 1. 1. 1.]
1. 1. 1. 1.]
1. 1. 1. 1.]
1. 1. 1 1.1]

2.6 Stationary Wavelet Transform

Stationary Wavelet Transform (SWT), also known as Undecimated wavelet transform or Algorithme a trous is a
translation-invariance modification of the Discrete Wavelet Transform that does not decimate coefficients at every

16 Chapter 2. API Reference

http://en.wikipedia.org/wiki/Stationary_wavelet_transform

PyWavelets Documentation, Release 0.2.0

transformation level.

2.6.1 Multilevel swt

pywt . swt (data, wavelet, level [start_level:O])
Performs multilevel Stationary Wavelet Transform.

Parameters

» data — Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

¢ wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* level — Required transform level. See the swt_max_level () function.
Returned list of coefficient pairs is in the form:

[(cAl, cD1), (cA2, cD2), ..., (cAn, cDn)]

where n is the level value.

2.6.2 Multilevel swt2

pywt . swt2 (data, wavelet, level[, start_level=0])
Performs multilevel 2D Stationary Wavelet Transform.

Parameters
* data — 2D array with input data.

* wavelet — Wavelet to use in the transform. This can be a name of the wavelet from the
pywt.wavelist list or a Wavelet object instance.

* level — Number of decomposition steps to perform.
o start_level — The level at which the decomposition will begin.

The result is a set of coefficients arrays over the range of decomposition levels:

[
(cA_n,
(cH_n, cV_n, cD_n)
)I
(cA_n+1,
(cH_n+1, cV_n+1, cD_n+1)
)I
(cA_n+level,
(cH_n+level, cV_n+level, cD_n+t+level)
)
]

where cA is approximation, cH is horizontal details, ¢V is vertical details, c¢D is diagonal details, 7 is start_level

and m equals n+level.

2.6. Stationary Wavelet Transform

17

PyWavelets Documentation, Release 0.2.0

2.6.3 Maximum decomposition level - swt_max_level
pywt .swt_max_level (input_len)
Calculates the maximum level of Stationary Wavelet Transform for data of given length.

Parameters input_len — Input data length.

2.7 Wavelet Packets

New in version 0.2. Version 0.2 of PyWavelets includes many new features and improvements. One of such new feature
is a two-dimansional wavelet packet transform structure that is almost completely sharing programming interface with
the one-dimensional tree structure.

In order to achieve this simplification, a new inheritance scheme was used in which a BaseNode base node class is a
superclass for both Node and Node 2D node classes.

The node classes are used as data wrappers and can be organized in trees (binary trees for 1D transform case and
quad-trees for the 2D one). They are also superclasses to the WaveletPacket class and WaveletPacket2D
class that are used as the decomposition tree roots and contain a couple additional methods.

The below diagram ilustrates the inheritance tree:
* BaseNode - common interface for 1D and 2D nodes:
— Node - data carrier node in a 1D decomposition tree
#* WaveletPacket - 1D decomposition tree root node
— Node2D - data carrier node in a 2D decomposition tree

* WaveletPacket2D - 2D decomposition tree root node

2.7.1 BaseNode - a common interface of WaveletPacket and WaveletPacket2D

class pywt . BaseNode

class pywt .Node (BaseNode)

class pywt .WaveletPacket (Node)

class pywt .Node2D (BaseNode)

class pywt .WaveletPacket2D (Node2D)

Note: The BaseNode is a base class for Node and Node2D. It should not be used directly unless creating a
new transformation type. It is included here to documentat the common interface of 1D and 2D node an wavelet
packet transform classes.

__init__ (parent, data, node_name)
Parameters
* parent — parent node. If parent is None then the node is considered detached.

* data — data associated with the node. 1D or 2D numeric array, depending on the transform
type.

* node_name — a name identifying the coefficients type. See Node.node_name and
Node2D.node_name for information on the accepted subnodes names.

18 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

data
Data associated with the node. 1D or 2D numeric array (depends on the transform type).

parent
Parent node. Used in tree navigation. None for root node.

wavelet
Wavelet used for decomposition and reconstruction. Inherited from parent node.

mode
Signal extension mode for the dwt () (dwt2 ()) and idwt () (idwt2 ()) decomposition and recon-
struction functions. Inherited from parent node.

level
Decomposition level of the current node. O for root (original data), 1 for the first decomposition level, etc.

path
Path string defining position of the node in the decopmosition tree.

node_name
Node name describing data coefficients type of the current subnode.

See Node .node_name and Node2D .node_name.

maxlevel
Maximum allowed level of decomposition. Evaluated from parent or child nodes.

is_empty
Checks if data attribute is None.

has_any subnode
Checks if node has any subnodes (is not a leaf node).

decompose ()
Performs Discrete Wavelet Transform on the dat a and returns transform coefficients.

reconstruct ([update:False])
Performs Inverse Discrete Wavelet Transform on subnodes coefficients and returns reconstructed data for
the current level.

Parameters update — If set, the dat a attribute will be updated with the reconstructed value.

Note: Descends to subnodes and recursively calls reconstruct () on them.

get_subnode (part[, decompose:Tme])
Returns subnode or None (see decomposition flag description).

Parameters
* part — Subnode name

* decompose — If True and subnode does not exist, it will be created using coefficients from
the DWT decomposition of the current node.

__getitem__ (path)
Used to access nodes in the decomposition tree by string path.

Parameters path — Path string composed from valid node names. See Node . node_name and
Node2D.node_name for node naming convention.

Similar to get_subnode () method with decompose=True, but can access nodes on any level in the
decomposition tree.

2.7.

Wavelet Packets 19

PyWavelets Documentation, Release 0.2.0

If node does not exist yet, it will be created by decomposition of its parent node.

__setitem__ (path, data)
Used to set node or node’s data in the decomposition tree. Nodes are identified by string path.

Parameters

e path — Path string composed from valid node names. See Node.node_name and
Node?2D.node_name for node naming convention.

* data — numeric array or BaseNode subclass.

__delitem__ (path)
Used to delete node from the decomposition tree.

Parameters path — Path string composed from valid node names. See Node . node_name and
Node2D.node_name for node naming convention.

get_leaf nodes ([decompose:False])
Traverses through the decomposition tree and collects leaf nodes (nodes without any subnodes).

Parameters decompose — If decompose is True, the method will try to decompose the tree up
to the maximum level.

walk (self,ﬁmc[, args:()[, kwargs:{}[, decompose:True]]])
Traverses the decomposition tree and calls func (node, =*args, x*kwargs) onevery node. If func
returns True, descending to subnodes will continue.

Parameters
* func - callable accepting BaseNode as the first param and optional positional and key-
word arguments:

func (node, rargs, xxkwargs)

* decompose — If decompose is True (default), the method will also try to decompose the
tree up to the maximum level.
Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

walk_depth (self, func[, args:()[, kwargs:{}[, decompose:False]]])
Similar to walk () but traverses the tree in depth-first order.

Parameters

* func — callable accepting BaseNode as the first param and optional positional and key-
word arguments:

func (node, =rargs, xxkwargs)

* decompose — If decompose is True, the method will also try to decompose the tree up to
the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

20 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

2.7.2 WaveletPacket and WaveletPacket tree Node

class pywt .Node (BaseNode)
class pywt . WaveletPacket (Node)

node_name
Node name describing data coefficients type of the current subnode.

For WaveletPacket case it is just as in dwt () :
* a - approximation coefficients
¢ d - details coefficients

decompose ()

See Also:
edwt () for 1D Discrete Wavelet Transform output coefficients.

class pywt . WaveletPacket (Node)

__init__ (data, wavelet[, mode= ’sym’[, maxlevelzNone]])
Parameters
* data — data associated with the node. 1D numeric array.
* wavelet — Wavelet to use for decomposition and reconstruction.

* mode — Signal extension mode for the dwt () and idwt () decomposition and recon-
struction functions.

* maxlevel — Maximum allowed level of decomposition. If not specified it will be calculated
based on the wavelet and data length using pywt . dwt_max_level ().

get_level (level [, order="natural ”[, decomposezTrue]])
Collects nodes from the given level of decomposition.

Parameters
* level — Specifies decomposition /evel from which the nodes will be collected.
* order — Specifies nodes order - natural (natural) or frequency (freq).

* decompose — If set then the method will try to decompose the data up to the specified
level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to
False, only existing nodes will be returned.

2.7.3 WaveletPacket2D and WaveletPacket2D tree Node2D

class pywt . Node2D (BaseNode)
class pywt . WaveletPacket2D (Node2D)

node_name

For WwaveletPacket2D case it is just as in dwt2 () :

2.7. Wavelet Packets 21

PyWavelets Documentation, Release 0.2.0

* a - approximation coefficients (LL)

¢ h - horizontal detail coefficients (LH)
e v - vertical detail coefficients (HL)

* d - diagonal detail coefficients (HH)

decompose ()

See Also:
dwt2 () for 2D Discrete Wavelet Transform output coefficients.
expand_2d_path(self, path):

class pywt .WaveletPacket2D (Node2D)

__init__ (data, wavelet[, mode= ’sym’[, maxlevel:None]])
Parameters
» data — data associated with the node. 2D numeric array.
* wavelet — Wavelet to use for decomposition and reconstruction.

* mode — Signal extension mode for the dwt () and idwt () decomposition and recon-
struction functions.

* maxlevel - Maximum allowed level of decomposition. If not specified it will be calculated
based on the wavelet and data length using pywt . dwt_max_level ().

get_level (level [, order="natural ”[, decompose:Tme]])
Collects nodes from the given level of decomposition.

Parameters
¢ level — Specifies decomposition level from which the nodes will be collected.
* order — Specifies nodes order - natural (natural) or frequency (freq).

* decompose — If set then the method will try to decompose the data up to the specified
level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to
False, only existing nodes will be returned.

2.8 Thresholding functions

The thresholding helper module implements the most popular signal thresholding functions.

2.8.1 Hard thresholding

pywt .thresholding.hard (data, value[, substitute:O])
Hard thresholding. Replace all data values with substitute where their absolute value is less than the value
param.

Data values with absolute value greater or equal to the thresholding value stay untouched.

Parameters

22 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

¢ data — numeric data
¢ value — thresholding value
 substitute — substitute value

Returns array

2.8.2 Soft thresholding

pywt.thresholding.soft (data, value[, substitute:O])
Soft thresholding.

Parameters
* data — numeric data
¢ value — thresholding value
* substitute — substitute value

Returns array

2.8.3 Greater

pywt.thresholding.greater (data, value[, substitute:O])

Replace data with substitute where data is below the thresholding value.

Greater data values pass untouched.
Parameters
e data — numeric data
* value — thresholding value
* substitute — substitute value

Returns array

2.8.4 Less

pywt.thresholding.less (data, value[, substitute=0])

Replace data with substitute where data is above the thresholding value.

Less data values pass untouched.
Parameters
* data — numeric data
* value — thresholding value
* substitute — substitute value

Returns array

2.8. Thresholding functions

23

PyWavelets Documentation, Release 0.2.0

2.9 Other functions

2.9.1 Single-level n-dimensional Discrete Wavelet Transform.

pywt .dwtn (data, wavelet[, mode= ’sym’])
Performs single-level n-dimensional Discrete Wavelet Transform.

Parameters
* data — n-dimensional array
» wavelet — wavelet to use (Wavelet object or name string)
* mode — signal extension mode, see MODES

Results are arranged in a dictionary, where key specifies the transform type on each dimension and value is a
n-dimensional coefficients array.

For example, for a 2D case the result will look something like this:

{
"aa’: <coeffs>

A - approx. on lst dim, approx. on 2nd dim
"ad’: <coeffs> # H

v

D

- approx. on 1lst dim, det. on 2nd dim
- det. on 1lst dim, approx. on 2nd dim
— det. on 1st dim, det. on 2nd dim

"da’: <coeffs>
rdd’ : <coeffs>

2.9.2 Integrating wavelet functions - intwave ()

pywt .intwave (wavelet[, precisi0n=8])
Integration of wavelet function approximations as well as any other signals can be performed using the
pywt .intwave () function.

The result of the call depends on the wavelet argument:

for orthogonal wavelets - an integral of the wavelet function specified on an x-grid:
[int_psi, x] = intwave (wavelet, precision)

for other wavelets - integrals of decomposition and reconstruction wavelet functions and a corresponding
x-grid:
[int_psi_d, int_psi_r, x] = intwave (wavelet, precision)

ofor a tuple of coefficients data and a x-grid - an integral of function and the given x-grid is returned (the
x-grid is used for computations).:

[int_function, x] = intwave((data, x), precision)

Example:

>>> import pywt
>>> waveletl = pywt.Wavelet ('db2")

>>> [int_psi, x] = pywt.intwave (waveletl, precision=5)
>>> wavelet2 = pywt.Wavelet ('biorl.3")
>>> [int_psi_d, int_psi_r, x] = pywt.intwave (wavelet2, precision=5)

24 Chapter 2. API Reference

PyWavelets Documentation, Release 0.2.0

2.9.3 Central frequency of psi wavelet function

pywt .centfrq (wavelet[, precision:é’])
pywt .cent £rq ((function_aprox, x))

Parameters
* wavelet — Wavelet, wavelet name string or (wavelet function approx., x grid) pair

* precision — Precision that will be used for wavelet function approximation computed with
the Wavelet .wavefun () method.

2.9. Other functions 25

PyWavelets Documentation, Release 0.2.0

26

Chapter 2. API Reference

CHAPTER
THREE

USAGE EXAMPLES

The following examples are used as doc-tests regression tests written using reST markup. They are included in the
docummentation since they contain various useful examples illustrating how to use and how to not use PyWavelets.

3.1 The Wavelet object

3.1.1 Wavelet families and builtin Wavelets names

Wavelet objects are really a handy carriers of a bunch of DWT-specific data like quadrature mirror filters and some
general properties associated with them.

At first let’s go through the methods of creating a Wave let object. The easiest and the most convenient way is to use
builtin named Wavelets.

These wavelets are organized into groups called wavelet families. The most commonly used families are:

>>> import pywt
>>> pywt.families ()
["haar’, ’"db’, ’'sym’, ’'coif’, ’'bior’, ’'rbio’, ’"dmey’]

The wavelist () function with family name passed as an argument is used to obtain the list of wavelet names in
each family.

>>> for family in pywt.families():

print " family:" % family, 7, ’.Jjoin(pywt.wavelist (family))
haar family: haar
db family: dbl, db2, db3, db4, db5, db6, db7, db8, db9, dbl0, dbll, dbl2, dbl3, dbl4, dbl5, dblé6, db:
sym family: sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, symlO, symll, syml2, syml3, syml4, syml5,
coif family: coifl, coif2, coif3, coif4, coifb
bior family: biorl.l, biorl.3, biorl.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.!
rbio family: rbiol.l, rbiol.3, rbiol.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.!
dmey family: dmey

To get the full list of builtin wavelets’ names just use the wavelist () with no argument. As you can see currently
there are 76 builtin wavelets.

>>> len (pywt.wavelist ())
76

3.1.2 Creating Wavelet objects

Now when we know all the names let’s finnally create a Wavelet object:

27

PyWavelets Documentation, Release 0.2.0

>>> w = pywt.Wavelet ("db3")

So.. that’s it.

3.1.3 Wavelet properties

But what can we do with Wavelet objects? Well, they carry some interresting information.

First, let’s try printing a Wavelet object. This shows a brief information about it’s name, it’s family name and some
properties like orthogonality and symmetry.

>>> print w
Wavelet db3

Family name: Daubechies
Short name: db

Filters length: 6
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric

But the most important information are the wavelet filters coefficients, which are used in Discrete Wavelet Transform.
These coefficients can be obtained via the dec_lo, Wavelet.dec hi, rec_lo and rec_hi attributes, which
corresponds to lowpass and highpass decomposition filters and lowpass and highpass reconstruction filters respec-
tively:

>>> w.dec_lo

[0.035226291882100656, —-0.085441273882241486, -0.13501102001039084, 0.45987750211933132, 0.8068915009:
>>> w.dec_hi

[-0.33267055295095688, 0.80689150931333875, -0.45987750211933132, -0.13501102001039084, 0.0854412738
>>> w.rec_lo

[0.33267055295095688, 0.80689150931333875, 0.45987750211933132, -0.13501102001039084, -0.08544127388
>>> w.rec_hi

[0.035226291882100656, 0.085441273882241486, -0.13501102001039084, -0.45987750211933132, 0.806891509:

Another way to get the filters data is to use the fi1ter_ bank attribute, which returns all four filters in a tuple:

>>> w.filter_bank == (w.dec_lo, w.dec_hi, w.rec_lo, w.rec_hi)
True

Other Wavelet’s properties are:
Wavelet name, short_family name and family_ name:

>>> print w.name

db3

>>> print w.short_family name
db

>>> print w.family name
Daubechies

* Decomposition (dec_1en) and reconstruction (rec_ len) filter lengths:

>>> w.dec_len
6
>>> w.rec_len
6

¢ Orthogonality (orthogonal) and biorthogonality (biorthogonal):

28 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> w.orthogonal
True

>>> w.biorthogonal
True

e Symmetry (symmetry):

>>> print w.symmetry
asymmetric

* Number of vanishing moments for the scaling function phi (vanishing_moments_phi) and the
wavelet function psi (vanishing_moments_psi) associated with the filters:

>>> w.vanishing moments_phi
0
>>> w.vanishing_moments_psi
3

Now when we know a bit about the builtin Wavelets, les’t see how to create custom Wavelets objects. These can be
done in two ways:

1. Passing the filter bank object that implements the filter_bank attribute. The attribute must return four filters
coefficients.

>>> class MyHaarFilterBank (object) :
@property
def filter_ bank(self):
from math import sgrt
return ([sqrt(2)/2, sqrt(2)/2]1, [-sqgrt(2)/2, sqrt(2)/21,
[sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])

>>> my_wavelet = pywt.Wavelet ('My Haar Wavelet’, filter_bank=MyHaarFilterBank())

2. Passing the filters coefficients directly as the filter_bank parameter.

>>> from math import sqrt

>>> my_filter_bank = ([sqgrt(2)/2, sqgrt(2)/2]1, [-sqrt(2)/2, sqrt(2)/2],

L. [sqgrt (2) /2, sqrt(2)/2], I[sqrt(2)/2, -sqrt(2)/21])

>>> my_wavelet = pywt.Wavelet ('My Haar Wavelet’, filter_bank=my_filter_lbank)

Note that such custom wavelets will not have all the properties set to correct values:

>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:
Filters length: 2

Orthogonal: False
Biorthogonal: False
Symmetry: unknown

You can hovewer set a few of them on your own:

>>> my_wavelet.orthogonal = True
>>> my_wavelet.biorthogonal = True

>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:

3.1. The Wavelet object 29

PyWavelets Documentation, Release 0.2.0

Filters length: 2

Orthogonal: True
Biorthogonal: True
Symmetry: unknown

3.1.4 And now... the wavefun!

We all know that the fun with wavelets is in wavelet functions. Now what would be this package without a tool to
compute wavelet and scaling functions approximations?

This is the purpose of the wavefun () method, which is used to approximate scaling function (phi) and wavelet
function (psi) at the given level of refinement, based on the filters coefficients.

The number of returned values varies depending on the wavelet’s orthogonality property. For orthogonal wavelets the
result is tuple with scaling function, wavelet function and xgrid coordinates.

>>> w = pywt.Wavelet (' sym3’)

>>> w.orthogonal

True

>>> (phi, psi, x) = w.wavefun (level=5)

For biorthogonal (non-orthogonal) wavelets different scaling and wavelet functions are used for decomposition and
reconstruction, and thus five elements are returned: decomposition scaling and wavelet functions approximations,
reconstruction scaling and wavelet functions approximations, and the xgrid.

>>> w = pywt.Wavelet ("biorl.3")

>>> w.orthogonal

False

>>> (phi_d, psi_d, phi_r, psi_r, x) = w.wavefun(level=5)

See Also:

You can find live examples of wavefun () usage and images of all the built-in wavelets on the Wavelet Properties
Browser page.

3.2 Signal Extension Modes

Import pywt first

>>> import pywt

>>> def format_array(a):

"""Consistent array representation across different systems"""
import numpy
a = numpy.where (numpy.abs(a) < le-5, 0, a)

return numpy.array2string(a, precision=5, separator=’ ’, suppress_small=True)

List of availble signal extension modes:

>>> print pywt.MODES.modes
["zpd", ’'cpd’, ’"sym’, ‘ppd’, 'spl’, ’‘per’]

Test that dwt () and idwt () can be performed using every mode:

30 Chapter 3. Usage examples

http://wavelets.pybytes.com
http://wavelets.pybytes.com

PyWavelets Documentation, Release 0.2.0

>> x = [1,2,1,5,-1,8,4,6]
>>> for mode in pywt.MODES.modes:
cA, cD = pywt.dwt (x, "db2’, mode)
print "Mode:", mode
print "cA:", format_array (chA)
print "cD:", format_array (cD)
. print "Reconstruction:", pywt.idwt (cA, cD, ’"db2’, mode)
Mode: zpd

cA: [-0.03468 1.73309 3.40612 6.32929 6.95095]
cD: [-0.12941 -2.156 -5.95035 -1.21545 -1.8625]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: cpd

cA: [1.2848 1.73309 3.40612 6.32929 7.51936]
cD: [-0.48296 -2.156 -5.95035 -1.21545 0.25882]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: sym

cA: [1.76777 1.73309 3.40612 6.32929 7.77817]
cD: [-0.61237 -2.156 -5.95035 -1.21545 1.22474]
Reconstruction: [1. 2. 1. 5. —-1. 8. 4. 6.]
Mode: ppd

cA: [6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [1. 2. 1. 5. —-1. 8. 4. 6.]
Mode: spl

cA: [-0.51764 1.73309 3.40612 6.32929 7.45001]
cD: [O. -2.156 -5.95035 -1.21545 0.]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: per

cA: [4.05317 3.05257 2.85381 8.42522]

cD: [0.18947 4.18258 4.33738 2.60428]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]

Invalid mode name should rise a ValueError:

>>> pywt.dwt ([1,2,3,4], ’"db2’, ’“invalid’)
Traceback (most recent call last):

ValueError: Unknown mode name ’invalid’.

You can also refer to modes via MODES class attributes:

>>> for mode_name in [’zpd’, ’'cpd’, 'sym’, ’‘ppd’, ’"spl’, ’'per’]:
mode = getattr (pywt.MODES, mode_name)
cA, cb = pywt.dwt([1,2,1,5,-1,8,4,6], "db2’, mode)
print "Mode:", mode, " (%s)" % mode_name
print "cA:", format_array (chA)
print "cD:", format_array (cD)
print "Reconstruction:", pywt.idwt (cA, cD, ’"db2’, mode)

Mode: 0 (zpd)

cA: [-0.03468 1.73309 3.40612 6.32929 6.95095]
cD: [-0.12941 -2.156 -5.95035 -1.21545 -1.8625]
Reconstruction: [1. 2. 1. 5. —-1. 8. 4. 6.]

Mode: 2 (cpd)

cA: [1.2848 1.73309 3.40612 6.32929 7.51936]
cD: [-0.48296 -2.156 -5.95035 -1.21545 0.25882]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 1 (sym)

cA: [1.76777 1.73309 3.40612 6.32929 7.77817]
cD: [-0.61237 -2.156 -5.95035 -1.21545 1.22474]

3.2. Signal Extension Modes 31

PyWavelets Documentation, Release 0.2.0

Reconstruction: [1. 2. 1. 5. —-1. 8. 4. 6.]
Mode: 4 (ppd)

cA: [6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 3 (spl)

cA: [-0.51764 1.73309 3.40612 6.32929 7.45001]
cD: [O. -2.156 -5.95035 -1.21545 0.]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 5 (per)

cA: [4.05317 3.05257 2.85381 8.42522]

cD: [0.18947 4.18258 4.33738 2.60428]
Reconstruction: [1. 2. 1. 5. —-1. 8. 4. 6.]

Some invalid mode values:

>>> pywt.dwt (x, "db2’, -1)
Traceback (most recent call last):

ValueError: Invalid mode.
>>> pywt.dwt (x, "db2", 7)
Traceback (most recent call last):

ValueError: Invalid mode.

>>> pywt.dwt (x, "db2’, None)
Traceback (most recent call last):

TypeError: expected string or Unicode object, NoneType found

The default mode is sym:

>>> cA, cD = pywt.dwt(x, "db2")

>>> print cA

[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD

[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt (cA, cD, ’"db2’")

[1. 2. 1. 5. -1. 8. 4. ©6.]

And using a keyword argument:

>>> cA, cD = pywt.dwt(x, ’"db2’, mode="sym’)

>>> print cA

[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD

[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt (cA, cD, "db2’)

[1. 2. 1. 5. -1. 8. 4. 6.]

3.3 DWT and IDWT

3.3.1 Discrete Wavelet Transform

Let'sdoaDiscrete Wavelet Transform of asample data x using the db2 wavelet. It’s simple..

32 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> import pywt
>>> X = [31 T, 1, 1, 72! 5, 4, 6]
>>> cA, cD = pywt.dwt(x, "db2")

And the approximation and details coefficients are in cA and cD respectively:

>>> print cA
[5.65685425 7.39923721 0.22414387 3.33677403 7.77817459]
>>> print cD
[-2.44948974 -1.60368225 -4.44140056 -0.41361256 1.22474487]

3.3.2 Inverse Discrete Wavelet Transform

Now let’s do an opposite operation - Inverse Discrete Wavelet Transform:

>>> print pywt.idwt (cA, cD, "db2’)
[3. 7. 1. 1. -2. 5. 4. 6.]

Violla! That’s it!

3.3.3 More Examples

Now let’s experiment with the dwt () some more. For example let’s pass a Wavelet object instead of the wavelet
name and specify signal extension mode (the default is sym) for the border effect handling:

>>> w = pywt.Wavelet ("sym3’)

>>> cA, cD = pywt.dwt (x, wavelet=w, mode=’cpd’)

>>> print cA

[4.38354585 3.80302657 7.31813271 -0.58565539 4.09727044 7.81994027]
>>> print cD

[-1.33068221 -2.78795192 -3.16825651 -0.67715519 -0.09722957 -0.07045258]

Note that the output coefficients arrays lenght depends not only on the input data length but also on the :class:Wavelet
type (particularly onit’s filters lenght that are used in the transformation).

To find out what will be the output data size use the dwt__coeff_len () function:

>>> pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode=’sym’)
6

>>> pywt.dwt_coeff_len(len(x), w, "sym’)

6

>>> len (chA)

6

Looks fine. (And if you expected that the output length would be a half of the input data length, well, that’s the tradeoff
that allows for the perfect reconstruction...).

The third argument of the dwt_coeff_len () is the already mentioned signal extension mode (please refer to the
PyWavelets” documentation for the modes description). Currently there are six extension modes available:

>>> pywt .MODES.modes
[’Zpd,I ,de,, ,Sym,, Ipde’ ’Spl,, Iperl]

>>> [pywt.dwt_coeff_len(len(x), w.dec_len, mode) for mode in pywt.MODES.modes]
[6, 6, 6, 6, 6, 4]

3.3. DWT and IDWT 33

PyWavelets Documentation, Release 0.2.0

As you see in the above example, the per (periodization) mode is slightly different from the others. It’s aim when
doing the DWT transform is to output coefficients arrays that are half of the length of the input data.

Knowing that, you should never mix the periodization mode with other modes when doing DWT and IDWT. Otherwise,
it will produce invalid results:

>>> x
(3, 7, 1, 1, -2, 5, 4, 6]

>>> cA, cD = pywt.dwt (x, wavelet=w, mode='per’)

>>> print pywt.idwt (cA, cD, ’sym3’, ’sym’) # invalid mode
[1. 1. -2. 5.]

>>> print pywt.idwt (cA, cD, ’"sym3’, ’per’)

[3. 7. 1. 1. -2. 5. 4. 6.]

3.3.4 Tips & tricks
Passing None instead of coefficients data to idwt ()

Now some tips & tricks. Passing None as one of the coefficient arrays parameters is similar to passing a zero-filled
array. The results are simply the same:

>>> print pywt.idwt([1,2,0,1], None, ’"db2’, ’sym’)
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print pywt.idwt([1, 2, O, 1], [0, O, O, 0], "db2’, ’"sym’)
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print pywt.idwt (None, [1, 2, O, 1], ’"db2’, ’sym’)
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

>>> print pywt.idwt ([0, O, O, O], (1, 2, O, 1], "db2’, ’"sym’)
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

Remember that only one argument at a time can be None:

>>> print pywt.idwt (None, None, ’db2’, ’sym’)
Traceback (most recent call last):

ValueError: At least one coefficient parameter must be specified.

Coefficients data size in idwt

When doing the IDWT transform, usually the coefficient arrays must have the same size.

>>> print pywt.idwt([1, 2, 3, 4, 51, [1, 2, 3, 41, ’"db2’, ’sym’)
Traceback (most recent call last):

ValueError: Coefficients arrays must have the same size.

But for some applications like multilevel DWT and IDWT it is sometimes conveniet to allow for a small departure
from this behaviour. When the correct_size flag is set, the approximation coefficients array can be larger from the
details coefficient array by one element:

>>> print pywt.idwt([1, 2, 3, 4, 51, [1, 2, 3, 41, ’'db2’, ’"sym’, correct_size=True)
[1.76776695 0.61237244 3.18198052 0.61237244 4.59619408 0.61237244]

34 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> print pywt.idwt([1, 2, 3, 41, [1, 2, 3, 4, 5], 'db2’, ’sym’, correct_size=True)
Traceback (most recent call last):

ValueError: Coefficients arrays must satisfy (0 <= len(cA) - len(cD) <= 1).

Not every coefficient array can be used in IDWT. In the following example the idwt () will fail because the input
arrays are invalid - they couldn’t be created as a result of DWT, beacuse the minimal output length for dwt using db4
wavelet and the sym mode is 4, not 3:

>>> pywt.idwt ([1,2,4], [4,1,3], "db4", "sym’)
Traceback (most recent call last):

ValueError: Invalid coefficient arrays length for specified wavelet. Wavelet and mode must be the sar

>>> pywt.dwt_coeff_len(l, pywt.Wavelet (’db4’).dec_len, ’'sym’)
4

3.4 Multilevel DWT, IDWT and SWT

3.4.1 Multilevel DWT decomposition

>>> import pywt

>>> x = [3, 7, 1, 1, -2, 5, 4, 6]

>>> dbl = pywt.Wavelet ('dbl”)

>>> cA3, cD3, cD2, cDl = pywt.wavedec(x, dbl)
>>> print cA3

[8.83883476]

>>> print cD3

[-0.35355339]

>>> print cD2

[4. -3.5]

>>> print cDl

[-2.82842712 0. -4.94974747 -1.41421356]

>>> pywt.dwt_max_level (len(x), dbl)

>>> cA2, cD2, cDl = pywt.wavedec(x, dbl, mode=’cpd’, level=2)

3.4.2 Multilevel IDWT reconstruction

>>> coeffs = pywt.wavedec(x, dbl)
>>> print pywt.waverec (coeffs, dbl)
[3. 7. 1. 1. -2. 5. 4. 6.]

3.4.3 Multilevel SWT decomposition

>>> x = [3, 7, 1, 3, -2, 6, 4, 6]

>>> (cA2, cD2), (cAl, cDl) = pywt.swt(x, dbl, level=2)

>>> print cAl

[7.07106781 5.65685425 2.82842712 0.70710678 2.82842712 7.07106781
7.07106781 6.36396103]

3.4. Multilevel DWT, IDWT and SWT 35

PyWavelets Documentation, Release 0.2.0

>>> print cD1

[-2.82842712 4.24264069 -1.41421356 3.53553391 -5.65685425 1.41421356
-1.41421356 2.12132034]

>>> print cA2

[7. 4.5 4. 5.5 7. 9.5 10. 8.5]

>>> print cD2

[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> [(cA2, cD2)] = pywt.swt (cAl, dbl, level=1l, start_level=l)
>>> print cA2

[7. 4.5 4. 5.5 7. 9.5 10. 8.5]

>>> print cD2

[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> coeffs = pywt.swt(x, dbl)
>>> len (coeffs)

>>> pywt.swt_max_level (len (x))

3.5 Wavelet Packets

3.5.1 Import pywt

>>> import pywt

>>> def format_array(a):
"""Consistent array representation across different systems"""
import numpy
a = numpy.where (numpy.abs(a) < le-5, 0, a)
return numpy.array2string(a, precision=5, separator=’ ', suppress_small=True)

3.5.2 Create Wavelet Packet structure

Ok, let’s create a sample WaveletPacket:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket (data=x, wavelet=’'dbl’, mode=’sym’)

The input data and decomposition coefficients are stored in the WaveletPacket . data attribute:

>>> print wp.data
(r, 2, 3, 4, 5, 6, 7, 8]

Nodes are identified by paths. For the root node the path is ” and the decomposition level is 0.

>>> print repr (wp.path)

rr

>>> print wp.level
0

The maxlevel, if not given as param in the constructor, is automatically computed:

36 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> print wp[’ad’].maxlevel
3

3.5.3 Traversing WP tree:
Accessing subnodes:

>>> X = [11 2/ 3! 4! 5/ 6/ 7! 8]
>>> wp = pywt.WaveletPacket (data=x, wavelet=’'dbl’, mode=’sym’)

First check what is the maximum level of decomposition:

>>> print wp.maxlevel
3

and try accessing subnodes of the WP tree:
* Istlevel:

>>> print wp[’a’].data

[2.12132034 4.94974747 7.77817459 10.60660172]
>>> print wp[’a’].path

a

e 2nd level:

>>> print wp[’aa’].data
[5. 13.]

>>> print wp[’aa’].path
aa

¢ 3rd level:

>>> print wp[’aaa’].data
[12.72792206]

>>> print wp[’aaa’].path
aaa

Ups, we have reached the maximum level of decomposition and got an IndexError:

>>> print wp[’aaaa’].data
Traceback (most recent call last):

IndexError: Path length is out of range.

Now try some invalid path:

>>> print wp[’ac’]
Traceback (most recent call last):

ValueError: Subnode name must be in [’"a’, ’'d’], not ’'c’.

which just yielded a ValueError.

Accessing Node’s attributes:

WaveletPacket objectis a tree data structure, which evaluates to a set of Node objects. WaveletPacket is just
a special subclass of the Node class (which in turn inherits from the BaseNode).

3.5. Wavelet Packets 37

PyWavelets Documentation, Release 0.2.0

Tree nodes can be accessed using the obj/x] (Node.__getitem__ ()) operator. Each tree node has a set of at-
tributes: data, path, node_name, parent, level, maxlevel and mode.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket (data=x, wavelet='dbl’, mode=’sym’)

>>> print wp[’ad’].data
[-2. =2.]

>>> print wp[’ad’].path
ad

>>> print wp[’ad’].node_name
>>> print wp[’ad’].parent.path
>>> print wp[’ad’].level

>>> print wp[’ad’] .maxlevel

>>> print wp[’ad’] .mode
sym

Collecting nodes

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket (data=x, wavelet=’'dbl’, mode=’sym’)

We can get all nodes on the particular level either in natural order:

>>> print [node.path for node in wp.get_level (3, ’'natural’)]
["aaa’, ’"aad’, ’'ada’, 'add’, ’"daa’, ’'dad’, ’'dda’, ’"ddd’]

or sorted based on the band frequency (freq):

>>> print [node.path for node in wp.get_level (3, 'freq’)]
["aaa’, ’"aad’, ’'add’, 'ada’, ’'dda’, ’'ddd’, ’'dad’, "daa’]

Note that WaveletPacket .get_level () also performs automatic decomposition until it reaches the specified
level.

3.5.4 Reconstructing data from Wavelet Packets:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket (data=x, wavelet='dbl’, mode=’sym’)

Now create anew Wavelet Packet and setit’s nodes with some data.

>>> new_wp = pywt.WaveletPacket (data=None, wavelet="dbl’, mode="sym’)

>>> new_wp[’aa’] = wp[’aa’].data
>>> new_wp[’ad’] = [-2., —-2.]

38 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

For convenience, Node . data gets automatically extracted from the Node object:

>>> new_wp([’d’] = wp[’d’]

And reconstruct the data from the aa, ad and d packets.

>>> print new_wp.reconstruct (update=False)
[1. 2. 3. 4. 5. 6. 7. 8.]

If the update param in the reconstruct method is set to False, the node’s data will not be updated.

>>> print new_wp.data
None

Otherwise, the dat a attribute will be set to the reconstructed value.

>>> print new_wp.reconstruct (update=True)
[1. 2. 3. 4. 5. 6. 7. 8.]

>>> print new_wp.data

[1. 2. 3. 4. 5. 6. 7. 8.]

>>> print [n.path for n in new_wp.get_leaf_nodes (False)]
[!aar, IadI’ rdl]

>>> print [n.path for n in new_wp.get_leaf_nodes (True)]
["aaa’, ’"aad’, ’'ada’, '"add’, ’"daa’, ’'dad’, ’'dda’, ’'ddd’]

3.5.5 Removing nodes from Wavelet Packet tree:

Let’s create a sample data:

>> x = [1, 2, 3, 4, 5, 6, 7, 8]

>>> wp = pywt.WaveletPacket (data=x, wavelet=’'dbl’, mode=’sym’)
First, start with a tree decomposition at level 2. Leaf nodes in the tree are:

>>> dummy = wp.get_level (2)
>>> for n in wp.get_leaf nodes (False):
print n.path, format_array(n.data)

aa [5. 13.]

ad [-2. -2.]

da [-1. —-1.]

dd [O 0.1

>>> node = wp[’ad’]
>>> print node

ad: [-2. -2.]

To remove a node from the WP tree, use Python’s del obj[x] (Node.__delitem_):

>>> del wp[’ad’]

The leaf nodes that left in the tree are:

>>> for n in wp.get_leaf nodes():
. print n.path, format_array(n.data)
aa [5. 13.]

da [-1. -1.]
dd [0. 0.]

3.5. Wavelet Packets 39

PyWavelets Documentation, Release 0.2.0

And the reconstruction is:

>>> print wp.reconstruct ()
[2. 3. 2. 3. 6. 7. 6. 17.]

Now restore the deleted node value.

>>> wp[’ad’].data = node.data

Printing leaf nodes and tree reconstruction confirms the original state of the tree:

>>> for n in wp.get_leaf nodes (False):
print n.path, format_array(n.data)

aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [O 0.]

>>> print wp.reconstruct ()
[1. 2. 3. 4. 5. 6. 7. 8.]

3.5.6 Lazy eveluation:

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes
as presented in this example.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket (data=x, wavelet=’dbl’, mode=’sym’)

1. At first the wp’s attribute a is None

>>> print wp.a
None

Remember that you should not rely on the attribute access.
2. At first attempt to access the node it is computed via decomposition of it’s parent node (the wp object itself).

>>> print wp[’a’]
a: [2.12132034 4.94974747 7.77817459 10.60660172]

3. Now the wp.a is set to the newly created node:

>>> print wp.a
a: [2.12132034 4.94974747 7.77817459 10.60660172]

And so is wp.d:

>>> print wp.d
d: [-0.70710678 -0.70710678 —-0.70710678 —0.70710678]

40 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

3.6 2D Wavelet Packets

3.6.1 Import pywt

>>> import pywt
>>> import numpy

3.6.2 Create 2D Wavelet Packet structure

Start with preparing test data:

>>> x = numpy.array([[1l, 2, 3, 4, 5, 6, 7, 811 = 8, "d")
>>> print x
Ll 2.

I I R T e
[T SN N NN SN N NN

[S2ENC BNC) BNC RNC) NG NG ENE)
B B N e N

W wwwwwww
A O O O OO Oy OO O
O 00 O 00 0 0 0

DN DNDDNDDN

[
[
[
[
[
[
[]

Now create a 2D Wavelet Packet object:

>>> wp = pywt.WaveletPacket2D (data=x, wavelet="dbl’, mode=’"sym’)

The input data and decomposition coefficients are stored in the WaveletPacket2D.data attribute:

>>> print wp.data
[l 2. 3. 4.

e
R R
bl bl
sEEEEsE
Jonnnoey
S A
SO aFaa
PEEPEE®®

[
[
[
[
[
[
[]

Nodes are identified by paths. For the root node the path is ” and the decomposition level is 0.

>>> print repr (wp.path)

rr

>>> print wp.level
0

The WaveletPacket2D.maxlevel, if not given in the constructor, is automatically computed based on the data
size:

>>> print wp.maxlevel
3

3.6.3 Traversing WP tree:

Wavelet Packet nodes are arranged in a tree. Each node in a WP tree is uniquely identified and addressed by a path
string.

3.6. 2D Wavelet Packets 41

PyWavelets Documentation, Release 0.2.0

In the 1D WaveletPacket case nodes were accessed using ' a’ (approximation) and ’ d’ (details) path names
(each node has two 1D children).

Because now we deal with a bit more complex structure (each node has four children), we have four basic path names
based on the dwt 2D output convention to address the WP2D structure:

¢ a-LL, low-low coefficients

* h - LH, low-high coefficients
e v - HL, high-low coefficients
e d - HH, high-high coefficients

In other words, subnode naming corresponds to the dwt 2 () function output naming convention (as wavelet packet
transform is based on the dwt2 transform):

(cA, (cH, cvV, cD)) <——> ———————————————————

(fig.1l: DWT 2D output and interpretation)

Knowing what the nodes names are, we can now access them using the indexing operator obj[x]
(WaveletPacket2D._ getitem__ ()):

>>> print wp[’a’].data

[l 3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]
>>> print wp[’h’].data
[[0. 0. 0. ©0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

>>> print wp[’v’].data
[[-1. -1. -1. -1.
[-1. -1. -1. -1.
[-1. -1. -1. -1.
[-1. -1. -1. -1.
>>> print wp[’d’].data
[[0. 0.

O O O O

0. .
[0. 0. 0.]
[0. 0. O. .1
[0. O 0 L]

Similarly, a subnode of a subnode can be accessed by:

>>> print wp[’aa’].data
[[10. 26.]
[10. 26.1]

Indexing base WaveletPacket2D (as well as 1D WaveletPacket) using compound path is just the same as
indexing WP subnode:

42 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> node = wp['a’]
>>> print node[’a’].data
[[10. 26.]
[10. 26.1]
>>> print wp[’a’][’a’].data is wp[’aa’].data
True

Following down the decomposition path:

>>> print wp[’aaa’].data

[[36.]]

>>> print wp[’aaaa’].data
Traceback (most recent call last):

IndexError: Path length is out of range.

Ups, we have reached the maximum level of decomposition for the ' aaaa’ path, which btw. was:

>>> print wp.maxlevel
3

Now try some invalid path:

>>> print wp[’f’]
Traceback (most recent call last):

ValueError: Subnode name must be in [’a’, 'h’, 'v’, ’'d’"], not "f’.

Accessing Node2D’s attributes:

WaveletPacket2D is a tree data structure, which evaluates to a set of Node2D objects. WaveletPacket2D
is just a special subclass of the Node2D class (which in turn inherits from a BaseNode, just like with Node and
WaveletPacket for the 1D case.).

>>> print wp[’av’].data
[[-4. -4.]
[-4. -4.]]

>>> print wp[’av’].path
av
>>> print wp[’av’].node_name

>>> print wp[’av’].parent.path

>>> print wp[’av’].parent.data

[t 3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3 7. 11. 15.1]]

>>> print wp[’av’].level

>>> print wp[’av’] .maxlevel

3.6. 2D Wavelet Packets 43

PyWavelets Documentation, Release 0.2.0

>>> print wp[’av’] .mode
sym

Collecting nodes

We can get all nodes on the particular level using the WaveletPacket2D.get_level () method:
* 0 level - the root wp node:

>>> len(wp.get_level(0))

1

>>> print [node.path for node in wp.get_level (0)]
("1

* 1stlevel of decomposition:

>>> len (wp.get_level (1))

4

>>> print [node.path for node in wp.get_level(1l)]
[IaI, Ihl, ,V,, le]

* 2nd level of decomposition:

>>> len(wp.get_level(2))
16
>>> paths = [node.path for node in wp.get_level (2)]
>>> for i, path in enumerate (paths):
print path,
if (i+l1) % 4 == 0: print
aa ah av ad
ha hh hv hd
va vh vv vd
da dh dv dd

* 3rd level of decomposition:

>>> print len (wp.get_level (3))

64

>>> paths = [node.path for node in wp.get_level (3)]

>>> for i, path in enumerate (paths):
print path,
if (i+1) % == 0: print

aaa aah aav aad aha ahh ahv ahd

ava avh avv avd ada adh adv add

haa hah hav had hha hhh hhv hhd

hva hvh hvv hvd hda hdh hdv hdd

vaa vah vav vad vha vhh vhv vhd

vva vvh vvv vvd vda vdh vdv vdd

daa dah dav dad dha dhh dhv dhd

dva dvh dvv dvd dda ddh ddv ddd

Note that WaveletPacket2D.get_level () performs automatic decomposition until it reaches the given level.

3.6.4 Reconstructing data from Wavelet Packets:

Let’s create a new empty 2D Wavelet Packet structure and set its nodes values with known data from the previous

examples:

44 Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> new_wp = pywt.WaveletPacket2D (data=None, wavelet=’'dbl’, mode=’sym’)

>>> new_wp[’vh’] = wp[’vh’].data # [[0.0, 0.0], [0.0, 0.0]]

>>> new_wp['vv’] = wpl[’vh’].data # [[0.0, 0.0], [0.0, 0.0]]

>>> new_wp[’vd’] = [[0.0, 0.0], [0.0, 0.07]]

>>> new_wp[’a’] = [[3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.07,

L. [3.0, 7.0, 11.0, 15.01, [3.0, 7.0, 11.0, 15.0]]

>>> new_wp[(’d’] = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.07,
(0.0, 0.0, 0.0, 0.01, (0.0, 0.0, 0.0, 0.011

For convenience, Node2D . data gets automatically extracted from the base Node2D object:

>>> new_wp[’'h’] = wp['h’] # all zeros

Note: just remember to not assign to the node.data parameter directly (todo).

And reconstruct the data from the a, d, vh, vv, vd and h packets (Note that va node was not set and the WP tree is
“not complete” - the va branch will be treated as zero-array):

>>> print new_wp.reconstruct (update=False)

(f1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Now set the va node with the known values and do the reconstruction again:

>>> new_wp[’va’] = wpl[’va’]l.data # [[-2.0, -2.0], [-2.0, -2.0]]
>>> print new_wp.reconstruct (update=False)
[[2. 3. 4. 5. 6. 7. 8.]

T e S R e e

PR
R
sEEEEEs
qgonone
S A
P

]
]
]
-]
]
]
-]

O 00 O 00 0 00

[
[
[
[
[
[
[]

which is just the same as the base sample data x.

Of course we can go the other way and remove nodes from the tree. If we delete the va node, again, we get the “not
complete” tree from one of the previous examples:

>>> del new_wpl[’va’]

>>> print new_wp.reconstruct (update=False)
(f1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Just restore the node before next examples.

3.6. 2D Wavelet Packets 45

PyWavelets Documentation, Release 0.2.0

>>> new_wpl['va’]

wpl[’va’].data

If the update param in the WaveletPacket2D.reconstruct () method is set to False, the node’s

Node2D.data attribute will not be updated.

>>> print new_wp.data

None

Otherwise, the WaveletPacket2D.data attribute will be set to the reconstructed value.

>>> print new_wp.reconstruct (update=True)
5.

[[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.
>>> print new_w
[[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.

[1. 2. 3.
Since we have

T S S S S & I I N R S

an

(GG RN BNC, BNC, RNC BN C, NG, B NG NG I C, B G BN C BN G]

6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8
6. 7. 8.
6. 7. 8.
. 6. 7. 8.
a
6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8.
6. 7. 8.
interesting WP

]
]
]
-]
]
]
]

]

structure

built,

it

is

a

good

occasion

to

present

WaveletPacket2D.get_leaf_nodes () method, which collects non-zero leaf nodes from the WP tree:

>>> print
["a’,

’h’,

’

va’,

’vh’,

ryv’,

rvd’

’

Id!]

[n.path for n in new_wp.get_leaf_nodes()]

the

Passing the decompose=True parameter to the method will force the WP object to do a full decomposition up to the
maximum level of decomposition:

>>>
>>>
64

>>>

aaa
ava
haa
hva
vaa
vva
daa
dva

paths =
len (paths)

for i,
print path,
if (i+1)

aah
avh
hah
hvh
vah
vvh
dah
dvh

aav
avv
hav
hvv
vav
VvV
dav
dvv

[n.path for n in new_wp.get_leaf nodes (decompose=True)]

aad
avd
had
hvd
vad
vvd
dad
dvd

o
°

aha
ada
hha
hda
vha
vda
dha
dda

ahh
adh
hhh
hdh
vhh
vdh
dhh
ddh

3.6.5 Lazy eveluation:

0:

ahv
adv
hhv
hdv
vhv
vdv
dhv
ddv

print
ahd
add
hhd
hdd
vhd
vdd
dhd
ddd

path in enumerate (paths):

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes
as presented in this example.

46

Chapter 3. Usage examples

PyWavelets Documentation, Release 0.2.0

>>> x = numpy.array([[1l, 2, 3, 4, 5, 6, 7,

* 8)

>>> wp = pywt.WaveletPacket2D (data=x, wavelet=’'dbl’, mode=’sym’)

1. At first the wp’s attribute a is None

>>> print wp.a
None

Remember that you should not rely on the attribute access.

2. During the first attempt to access the node it is computed via decomposition of its parent node (the wp object

itself).

>>> print wp[’a’]

a: [[3. 7. 11. 15.]
[3. 7 11 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

3. Now the a is set to the newly created node:

>>> print wp.a

a: [[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]
And so is wp.d:

>>> print wp.d

d: [[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

3.7 Gotchas

PyWavelets utilizes NumPy under the hood. That’s why handling the data containing None values can be surprising.
None values are converted to ‘not a number’ (numpy . NaN) values:

>>> import numpy, pywt

>>> x = [None, None]

>>> mode = "sym’

>>> wavelet = ’"dbl’

>>> cA, cD = pywt.dwt (x, wavelet, mode)
>>> numpy.all (numpy.isnan (cA))

True

>>> numpy.all (numpy.isnan (cD))

True

>>> rec = pywt.idwt (cA, cD, wavelet, mode)
>>> numpy.all (numpy.isnan (rec))

True

3.7. Gotchas

47

PyWavelets Documentation, Release 0.2.0

48

Chapter 3. Usage examples

CHAPTER
FOUR

DEVELOPMENT NOTES

4.1 Building on Windows

4.1.1 Prepare build environment

To start developing PyWavelets code on Windows you will have to prepare build environment first. This will include
installing a couple components like Python, MinGW C compiler, Cython, Numpy and Sphinx.

4.1.2 Install Python

Go to the Python download site http://python.org/download/ and get the recent 2.x Python for Windows version
(Python 2.6 recommended). Install it.

4.1.3 Install MinGW C compiler

Take a look at http://www.mingw.org/wiki/Getting_Started and http://www.mingw.org/wiki/HOWTO_Install_the_ MinGW_GCC_Comp
Follow the instructions there to set up the compiler.

You <can also take a look at Cython’s “Installing MinGW on Windows” page at
http://docs.cython.org/src/tutorial/appendix.html.

4.1.4 Configure Distutils
Distutils is a standard Python build system. By default it relies on Microsoft Visual C compiler, but it is recommended
to use MinGW GCC compiler instead (PyWavelets is developed and tested using GCC).

In order to change the settings and use MinGW as the default compiler, edit or create a Distutils configuration file
c:\Python26\Lib\distutils\distutils.cfg and place the following entry in it:

[build]
compiler = mingw32

4.1.5 Install Cython

Instructions on installing recent Cython version are on http://docs.cython.org/src/quickstart/install.html.

49

http://python.org/download/
http://www.mingw.org/wiki/Getting_Started
http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite
http://docs.cython.org/src/tutorial/appendix.html
http://docs.cython.org/src/quickstart/install.html

PyWavelets Documentation, Release 0.2.0

4.1.6 Install Numpy

Fetch and install a recent Numpy binary from http://new.scipy.org/download.html.

4.1.7 Install Sphinx

Sphinx is a documentation tool that convert reStructuredText files into nice looking html documentation. It is only
required to rebuild PyWavelets documentation, not the package itself.
Get Sphinx from the Python Package Index (http://pypi.python.org/pypi/Sphinx), or install it with:

easy_install -U Sphinx

4.1.8 Ready to go

At this point you should be ready to go. Open command line and go to PyWavelets source code directory.
To build the project issue:

python setup.py build
To install:
python setup.py install

To build docs:

cd doc
doc2html.bat

To run some tests:

cd tests

python test_regression.py

python test_doc.py

python test_perfect_reconstruction.py

4.2 Building on Linux

4.2.1 Prepare build environment

There is a good chance that you already have a working build envoronment. Just skip steps that you don’t need to
execute.

Note that the examples below use apt itude package manager, which might be specific to only some Linux distri-
butions like Ubuntu. Use your favourite package manager to install these packages on your OS.

4.2.2 Install basic build tools

aptitude install build-essential gcc

50 Chapter 4. Development notes

http://new.scipy.org/download.html
http://pypi.python.org/pypi/Sphinx

PyWavelets Documentation, Release 0.2.0

4.2.3 Setup Python environment

aptitude install python python-dev python-setuptools

4.2.4 Setup Python virtualenv (optional)

If you wish to create a completely separate Python environment for the development purposes, you can use virtualenv
(http://pypi.python.org/pypi/virtualenv).
Just install it from the OS package repository:

aptitude install python-virtualenv

or get it from PyPI:

easy_install -U virtualenv

Now in the directory where you want to store the build environment execute:

virtualenv —--no-site-packages <name_of_the_venv>

To activate the newly created environment type:

source ./<name_of_the_venv>/bin/activate

4.2.5 Setup build dependencies

If you have created a virtual Python environment in the previus step remember to activate it before executing the
following commands.

Use pip (http://pypi.python.org/pypi/pip) or easy_install to install Python packages:

pip install Cython numpy

or:

easy_install -U Cython
easy_install numpy

Note: In case you want to use the OS package manager to install numpy, don’t specify the -——no-site-packages
virtualenv option. Otherwise the global package won’t be visible to the Python interpreter in the development envi-
ronment.

4.2.6 Install Sphinx

Sphinx is a documentation tool that convert reStructuredText files into nice looking html documentation. It is only
required to rebuild PyWavelets documentation, not the package itself.

Get Sphinx from the Python Package Index (http://pypi.python.org/pypi/Sphinx), or install it with:

easy_install -U Sphinx

4.2. Building on Linux 51

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/Sphinx

PyWavelets Documentation, Release 0.2.0

4.2.7 Build PyWavelets
Activate your Python virtual env, go to the pywt source directory and type the following to build and install the
package:

python setup.py build
python setup.py install

Go to the tests directory and run some tests to verify the installation:

cd tests

python test_regression.py

python test_doc.py

python test_perfect_reconstruction.py

4.3 Something not working?

If these instructions are not clear or you need help setting up your development environment, ask at the PyWavelets
discussion group - http://groups.google.com/group/pywavelets or pywavelets @ googlegroups.com.

52 Chapter 4. Development notes

http://groups.google.com/group/pywavelets
mailto:pywavelets@googlegroups.com

CHAPTER
FIVE

RESOURCES

5.1 Discussion group

PyWavelets discussions group (pywavelets @ googlegroups.com)

5.2 Wiki

wavelets.scipy.org

5.3 Code repository

svn co http://wavelets.scipy.org/svn/multiresolution/pywt/trunk pywt

5.4 Wavelet Properties Browser

wavelets.pybytes.com

53

http://groups.google.com/group/pywavelets
mailto:pywavelets@googlegroups.com
http://wavelets.scipy.org
http://wavelets.pybytes.com/

PyWavelets Documentation, Release 0.2.0

54

Chapter 5. Resources

CHAPTER
SIX

* genindex
* modindex

INDICES AND TABLES

55

PyWavelets Documentation, Release 0.2.0

56

Chapter 6. Indices and tables

PYTHON MODULE INDEX

P

pywt, 2?
pywt .thresholding, ??

57

