
PyWavelets Documentation
Release 0.3.0

The PyWavelets Developers

July 31, 2015

Contents

1 Main features 3

2 Requirements 5

3 Download 7

4 Install 9

5 Documentation 11

6 State of development & Contributing 13

7 Python 3 15

8 Contact 17

9 License 19

10 Contents 21
10.1 API Reference . 21
10.2 Usage examples . 41
10.3 Development notes . 61
10.4 Resources . 65
10.5 PyWavelets . 66
10.6 Indices and tables . 113

i

ii

PyWavelets Documentation, Release 0.3.0

PyWavelets is a free Open Source wavelet transform software for Python programming language. It is written in
Python, Cython and C for a mix of easy and powerful high-level interface and the best performance.

PyWavelets is very easy to start with and use. Just install the package, open the Python interactive shell and type:

>>> import pywt
>>> cA, cD = pywt.dwt([1, 2, 3, 4], 'db1')

Voilà! Computing wavelet transforms never before has been so simple :)

Contents 1

http://python.org/

PyWavelets Documentation, Release 0.3.0

2 Contents

CHAPTER 1

Main features

The main features of PyWavelets are:

• 1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

• 1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)

• 1D and 2D Wavelet Packet decomposition and reconstruction

• Approximating wavelet and scaling functions

• Over seventy built-in wavelet filters and custom wavelets supported

• Single and double precision calculations

• Results compatible with Matlab Wavelet Toolbox (TM)

3

http://wavelets.pybytes.com/

PyWavelets Documentation, Release 0.3.0

4 Chapter 1. Main features

CHAPTER 2

Requirements

PyWavelets is a package for the Python programming language. It requires:

• Python 2.6, 2.7 or >=3.3

• Numpy >= 1.6.2

5

http://python.org/
http://www.numpy.org

PyWavelets Documentation, Release 0.3.0

6 Chapter 2. Requirements

CHAPTER 3

Download

The most recent development version can be found on GitHub at https://github.com/PyWavelets/pywt.

Latest release, including source and binary package for Windows, is available for download from the Python Package
Index or on the Releases Page.

7

https://github.com/PyWavelets/pywt
http://pypi.python.org/pypi/PyWavelets/
http://pypi.python.org/pypi/PyWavelets/
https://github.com/PyWavelets/pywt/releases

PyWavelets Documentation, Release 0.3.0

8 Chapter 3. Download

CHAPTER 4

Install

In order to build PyWavelets from source, a working C compiler (GCC or MSVC) and a recent version of Cython is
required.

• Install PyWavelets with pip install PyWavelets.

• To build and install from source, navigate to downloaded PyWavelets source code directory and type python
setup.py install.

Prebuilt Windows binaries and source code packages are also available from Python Package Index.

Binary packages for several Linux distributors are maintained by Open Source community contributors. Query your
Linux package manager tool for python-wavelets, python-pywt or similar package name.

See also:

Development notes section contains more information on building and installing from source code.

9

http://cython.org/
http://pypi.python.org/pypi/PyWavelets/

PyWavelets Documentation, Release 0.3.0

10 Chapter 4. Install

CHAPTER 5

Documentation

Documentation with detailed examples and links to more resources is available online at
http://pywavelets.readthedocs.org.

For more usage examples see the demo directory in the source package.

11

http://pywavelets.readthedocs.org
https://github.com/PyWavelets/pywt/tree/master/demo

PyWavelets Documentation, Release 0.3.0

12 Chapter 5. Documentation

CHAPTER 6

State of development & Contributing

PyWavelets started in 2006 as an academic project for a master thesis on Analysis and Classification of Medical Signals
using Wavelet Transforms and was maintained until 2012 by its original developer. In 2013 maintenance was taken
over in a new repo) by a larger development team - a move supported by the original developer. The repo move doesn’t
mean that this is a fork - the package continues to be developed under the name “PyWavelets”, and released on PyPi
and Github (see this issue for the discussion where that was decided).

All contributions including bug reports, bug fixes, new feature implementations and documentation improvements are
welcome. Moreover, developers with an interest in PyWavelets are very welcome to join the development team!

13

http://en.ig.ma
https://github.com/PyWavelets/pywt
https://github.com/nigma/pywt/issues/13

PyWavelets Documentation, Release 0.3.0

14 Chapter 6. State of development & Contributing

CHAPTER 7

Python 3

Python 3.x is fully supported from release v0.3.0 on.

15

PyWavelets Documentation, Release 0.3.0

16 Chapter 7. Python 3

CHAPTER 8

Contact

Use GitHub Issues or the PyWavelets discussions group to post your comments or questions.

17

https://github.com/PyWavelets/pywt/issues
http://groups.google.com/group/pywavelets

PyWavelets Documentation, Release 0.3.0

18 Chapter 8. Contact

CHAPTER 9

License

PyWavelets is a free Open Source software released under the MIT license.

19

PyWavelets Documentation, Release 0.3.0

20 Chapter 9. License

CHAPTER 10

Contents

10.1 API Reference

10.1.1 Wavelets

Wavelet families()

pywt.families()
Returns a list of available built-in wavelet families. Currently the built-in families are:

•Haar (haar)

•Daubechies (db)

•Symlets (sym)

•Coiflets (coif)

•Biorthogonal (bior)

•Reverse biorthogonal (rbio)

•“Discrete” FIR approximation of Meyer wavelet (dmey)

Example:

>>> import pywt
>>> print pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']

Built-in wavelets - wavelist()

pywt.wavelist([family])
The wavelist() function returns a list of names of the built-in wavelets.

If the family name is None then names of all the built-in wavelets are returned. Otherwise the function returns
names of wavelets that belong to the given family.

Example:

>>> import pywt
>>> print pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5']

21

PyWavelets Documentation, Release 0.3.0

Custom user wavelets are also supported through the Wavelet object constructor as described below.

Wavelet object

class pywt.Wavelet(name[, filter_bank=None])
Describes properties of a wavelet identified by the specified wavelet name. In order to use a built-in wavelet the
name parameter must be a valid wavelet name from the pywt.wavelist() list.

Custom Wavelet objects can be created by passing a user-defined filters set with the filter_bank parameter.

Parameters

• name – Wavelet name

• filter_bank – Use a user supplied filter bank instead of a built-in Wavelet.

The filter bank object can be a list of four filters coefficients or an object with filter_bank attribute, which
returns a list of such filters in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

Wavelet objects can also be used as a base filter banks. See section on using custom wavelets for more informa-
tion.

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')

name
Wavelet name.

short_name
Short wavelet name.

dec_lo
Decomposition filter values.

dec_hi
Decomposition filter values.

rec_lo
Reconstruction filter values.

rec_hi
Reconstruction filter values.

dec_len
Decomposition filter length.

rec_len
Reconstruction filter length.

filter_bank
Returns filters list for the current wavelet in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

inverse_filter_bank
Returns list of reverse wavelet filters coefficients. The mapping from the filter_coeffs list is as follows:

22 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

[rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-1]]

short_family_name
Wavelet short family name

family_name
Wavelet family name

orthogonal
Set if wavelet is orthogonal

biorthogonal
Set if wavelet is biorthogonal

symmetry
asymmetric, near symmetric, symmetric

vanishing_moments_psi
Number of vanishing moments for the wavelet function

vanishing_moments_phi
Number of vanishing moments for the scaling function

Example:

>>> def format_array(arr):
... return "[%s]" % ", ".join(["%.14f" % x for x in arr])

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')
>>> print wavelet
Wavelet db1
Family name: Daubechies
Short name: db
Filters length: 2
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric

>>> print format_array(wavelet.dec_lo), format_array(wavelet.dec_hi)
[0.70710678118655, 0.70710678118655] [-0.70710678118655, 0.70710678118655]
>>> print format_array(wavelet.rec_lo), format_array(wavelet.rec_hi)
[0.70710678118655, 0.70710678118655] [0.70710678118655, -0.70710678118655]

Approximating wavelet and scaling functions - Wavelet.wavefun()

Wavelet.wavefun(level)
Changed in version 0.2: The time (space) localisation of approximation function points was added.

The wavefun()method can be used to calculate approximations of scaling function (phi) and wavelet function
(psi) at the given level of refinement.

For orthogonalwavelets returns approximations of scaling function and wavelet function with corresponding
x-grid coordinates:

[phi, psi, x] = wavelet.wavefun(level)

Example:

10.1. API Reference 23

PyWavelets Documentation, Release 0.3.0

>>> import pywt
>>> wavelet = pywt.Wavelet('db2')
>>> phi, psi, x = wavelet.wavefun(level=5)

For other (biorthogonal but not orthogonal) wavelets returns approximations of scaling and wavelet
function both for decomposition and reconstruction and corresponding x-grid coordinates:

[phi_d, psi_d, phi_r, psi_r, x] = wavelet.wavefun(level)

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('bior3.5')
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)

See also:

You can find live examples of wavefun() usage and images of all the built-in wavelets on the Wavelet Prop-
erties Browser page.

Using custom wavelets

PyWavelets comes with a long list of the most popular wavelets built-in and ready to use. If you need to use a
specific wavelet which is not included in the list it is very easy to do so. Just pass a list of four filters or an object with
a filter_bank attribute as a filter_bank argument to the Wavelet constructor.

The filters list, either in a form of a simple Python list or returned via the filter_bank attribute, must be in the
following order:

• lowpass decomposition filter

• highpass decomposition filter

• lowpass reconstruction filter

• highpass reconstruction filter

just as for the filter_bank attribute of the Wavelet class.

The Wavelet object created in this way is a standard Wavelet instance.

The following example illustrates the way of creating custom Wavelet objects from plain Python lists of filter coeffi-
cients and a filter bank-like objects.

Example:

>>> import pywt, math
>>> c = math.sqrt(2)/2
>>> dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
>>> filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
>>> myWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)
>>>
>>> class HaarFilterBank(object):
... @property
... def filter_bank(self):
... c = math.sqrt(2)/2
... dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
... return [dec_lo, dec_hi, rec_lo, rec_hi]
>>> filter_bank = HaarFilterBank()
>>> myOtherWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)

24 Chapter 10. Contents

http://wavelets.pybytes.com
http://wavelets.pybytes.com

PyWavelets Documentation, Release 0.3.0

10.1.2 Signal extension modes

Because the most common and practical way of representing digital signals in computer science is with finite arrays
of values, some extrapolation of the input data has to be performed in order to extend the signal before computing the
Discrete Wavelet Transform using the cascading filter banks algorithm.

Depending on the extrapolation method, significant artifacts at the signal’s borders can be introduced during that
process, which in turn may lead to inaccurate computations of the DWT at the signal’s ends.

PyWavelets provides several methods of signal extrapolation that can be used to minimize this negative effect:

• zpd - zero-padding - signal is extended by adding zero samples:

... 0 0 | x1 x2 ... xn | 0 0 ...

• cpd - constant-padding - border values are replicated:

... x1 x1 | x1 x2 ... xn | xn xn ...

• sym - symmetric-padding - signal is extended by mirroring samples:

... x2 x1 | x1 x2 ... xn | xn xn-1 ...

• ppd - periodic-padding - signal is treated as a periodic one:

... xn-1 xn | x1 x2 ... xn | x1 x2 ...

• sp1 - smooth-padding - signal is extended according to the first derivatives calculated on the edges
(straight line)

DWT performed for these extension modes is slightly redundant, but ensures perfect reconstruction. To receive the
smallest possible number of coefficients, computations can be performed with the periodization mode:

• per - periodization - is like periodic-padding but gives the smallest possible number of decompo-
sition coefficients. IDWT must be performed with the same mode.

Example:

>>> import pywt
>>> print pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

Notice that you can use any of the following ways of passing wavelet and mode parameters:

>>> import pywt
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], pywt.Wavelet('db2'), pywt.MODES.sp1)

Note: Extending data in context of PyWavelets does not mean reallocation of the data in computer’s physical memory
and copying values, but rather computing the extra values only when they are needed. This feature saves extra memory
and CPU resources and helps to avoid page swapping when handling relatively big data arrays on computers with low
physical memory.

10.1.3 Discrete Wavelet Transform (DWT)

Wavelet transform has recently become a very popular when it comes to analysis, de-noising and compression of sig-
nals and images. This section describes functions used to perform single- and multilevel Discrete Wavelet Transforms.

10.1. API Reference 25

PyWavelets Documentation, Release 0.3.0

Single level dwt

pywt.dwt(data, wavelet[, mode=’sym’])
The dwt() function is used to perform single level, one dimensional Discrete Wavelet Transform.

(cA, cD) = dwt(data, wavelet, mode='sym')

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

The transform coefficients are returned as two arrays containing approximation (cA) and detail (cD) coefficients
respectively. Length of returned arrays depends on the selected signal extension mode - see the signal extension
modes section for the list of available options and the dwt_coeff_len() function for information on getting
the expected result length:

•for all modes except periodization:

len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)

•for periodization mode ("per"):

len(cA) == len(cD) == ceil(len(data) / 2)

Example:

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db1')
>>> print cA
[2.12132034 4.94974747 7.77817459]
>>> print cD
[-0.70710678 -0.70710678 -0.70710678]

Multilevel decomposition using wavedec

pywt.wavedec(data, wavelet, mode=’sym’, level=None)
The wavedec() function performs 1D multilevel Discrete Wavelet Transform decomposition of given signal
and returns ordered list of coefficients arrays in the form:

[cA_n, cD_n, cD_n-1, ..., cD2, cD1],

where n denotes the level of decomposition. The first element (cA_n) of the result is approximation coefficients
array and the following elements (cD_n - cD_1) are details coefficients arrays.

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

26 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

• level – Number of decomposition steps to perform. If the level is None, then the full
decomposition up to the level computed with dwt_max_level() function for the given
data and wavelet lengths is performed.

Example:

>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
>>> cA2, cD2, cD1 = coeffs
>>> print cD1
[-0.70710678 -0.70710678 -0.70710678 -0.70710678]
>>> print cD2
[-2. -2.]
>>> print cA2
[5. 13.]

Partial Discrete Wavelet Transform data decomposition downcoef

pywt.downcoef(part, data, wavelet[, mode=’sym’[, level=1]])
Similar to dwt(), but computes only one set of coefficients. Useful when you need only approximation or only
details at the given level.

Parameters

• part – decomposition type. For a computes approximation coefficients, for d - details
coefficients.

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

• level – Number of decomposition steps to perform.

Maximum decomposition level - dwt_max_level

pywt.dwt_max_level(data_len, filter_len)
The dwt_max_level() function can be used to compute the maximum useful level of decomposition for the
given input data length and wavelet filter length.

The returned value equals to:

floor(log(data_len/(filter_len-1)) / log(2))

Although the maximum decomposition level can be quite high for long signals, usually smaller values are chosen
depending on the application.

10.1. API Reference 27

PyWavelets Documentation, Release 0.3.0

The filter_len can be either an int or Wavelet object for convenience.

Example:

>>> import pywt
>>> w = pywt.Wavelet('sym5')
>>> print pywt.dwt_max_level(data_len=1000, filter_len=w.dec_len)
6
>>> print pywt.dwt_max_level(1000, w)
6

Result coefficients length - dwt_coeff_len

pywt.dwt_coeff_len(data_len, filter_len, mode)

Based on the given input data length, Wavelet decomposition filter length and signal extension mode, the
dwt_coeff_len() function calculates length of resulting coefficients arrays that would be created while perform-
ing dwt() transform.

For periodization mode this equals:

ceil(data_len / 2)

which is the lowest possible length guaranteeing perfect reconstruction.

For other modes:

floor((data_len + filter_len - 1) / 2)

The filter_len can be either an int or Wavelet object for convenience.

10.1.4 Inverse Discrete Wavelet Transform (IDWT)

Single level idwt

pywt.idwt(cA, cD, wavelet[, mode=’sym’[, correct_size=0]])
The idwt() function reconstructs data from the given coefficients by performing single level Inverse Discrete
Wavelet Transform.

Parameters

• cA – Approximation coefficients.

• cD – Detail coefficients.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when DWT was performed in periodization mode.

• correct_size – Typically, cA and cD coefficients lists must have equal lengths in order
to perform IDWT. Setting correct_size to True allows cA to be greater in size by one element
compared to the cD size. This option is very useful when doing multilevel decomposition
and reconstruction (as for example with the wavedec() function) of non-dyadic length
signals when such minor differences can occur at various levels of IDWT.

Example:

28 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> print pywt.idwt(cA, cD, 'db2', 'sp1')
[1. 2. 3. 4. 5. 6.]

One of the neat features of idwt() is that one of the cA and cD arguments can be set to None. In that situation
the reconstruction will be performed using only the other one. Mathematically speaking, this is equivalent to
passing a zero-filled array as one of the arguments.

Example:

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> A = pywt.idwt(cA, None, 'db2', 'sp1')
>>> D = pywt.idwt(None, cD, 'db2', 'sp1')
>>> print A + D
[1. 2. 3. 4. 5. 6.]

Multilevel reconstruction using waverec

pywt.waverec(coeffs, wavelet[, mode=’sym’])
Performs multilevel reconstruction of signal from the given list of coefficients.

Parameters

• coeffs – Coefficients list must be in the form like returned by wavedec() decomposi-
tion function, which is:

[cAn, cDn, cDn-1, ..., cD2, cD1]

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

Example:

>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db2', level=2)
>>> print pywt.waverec(coeffs, 'db2')
[1. 2. 3. 4. 5. 6. 7. 8.]

Direct reconstruction with upcoef

pywt.upcoef(part, coeffs, wavelet[, level=1[, take=0]])
Direct reconstruction from coefficients.

Parameters

• part – Defines the input coefficients type:

– ‘a’ - approximations reconstruction is performed

– ‘d’ - details reconstruction is performed

• coeffs – Coefficients array to reconstruct.

10.1. API Reference 29

PyWavelets Documentation, Release 0.3.0

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• level – If level value is specified then a multilevel reconstruction is performed (first re-
construction is of type specified by part and all the following ones with part type a)

• take – If take is specified then only the central part of length equal to the take parameter
value is returned.

Example:

>>> import pywt
>>> data = [1,2,3,4,5,6]
>>> (cA, cD) = pywt.dwt(data, 'db2', 'sp1')
>>> print pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
[-0.25 -0.4330127 1. 2. 3. 4. 5.
6. 1.78589838 -1.03108891]

>>> n = len(data)
>>> print pywt.upcoef('a',cA,'db2',take=n) + pywt.upcoef('d',cD,'db2',take=n)
[1. 2. 3. 4. 5. 6.]

10.1.5 2D Forward and Inverse Discrete Wavelet Transform

Single level dwt2

pywt.dwt2(data, wavelet[, mode=’sym’])
The dwt2() function performs single level 2D Discrete Wavelet Transform.

Parameters

• data – 2D input data.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when DWT was performed in periodization mode.

Returns one average and three details 2D coefficients arrays. The coefficients arrays are organized in tuples in
the following form:

(cA, (cH, cV, cD))

where cA, cH, cV, cD denote approximation, horizontal detail, vertical detail and diagonal detail coefficients
respectively.

The relation to the other common data layout where all the approximation and details coefficients are stored in one big
2D array is as follows:

cA(LL)	cH(LH)

(cA, (cH, cV, cD)) <---> -------------------
cV(HL)	cD(HH)

30 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

PyWavelets does not follow this pattern because of pure practical reasons of simple access to particular type of the
output coefficients.

Example:

>>> import pywt, numpy
>>> data = numpy.ones((4,4), dtype=numpy.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> cA, (cH, cV, cD) = coeffs
>>> print cA
[[2. 2.]
[2. 2.]]

>>> print cV
[[0. 0.]
[0. 0.]]

Single level idwt2

pywt.idwt2(coeffs, wavelet[, mode=’sym’])
The idwt2() function reconstructs data from the given coefficients set by performing single level 2D Inverse
Discrete Wavelet Transform.

Parameters

• coeffs – A tuple with approximation coefficients and three details coefficients 2D arrays
like from dwt2():

(cA, (cH, cV, cD))

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when the dwt() was performed in the periodization mode.

Example:

>>> import pywt, numpy
>>> data = numpy.array([[1,2], [3,4]], dtype=numpy.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> print pywt.idwt2(coeffs, 'haar')
[[1. 2.]
[3. 4.]]

2D multilevel decomposition using wavedec2

pywt.wavedec2(data, wavelet[, mode=’sym’[, level=None]])
Performs multilevel 2D Discrete Wavelet Transform decomposition and returns coefficients list:

[cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]

where n denotes the level of decomposition and cA, cH, cV and cD are approximation, horizontal detail, vertical
detail and diagonal detail coefficients arrays respectively.

Parameters

10.1. API Reference 31

PyWavelets Documentation, Release 0.3.0

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

• level – Decomposition level. This should not be greater than the reasonable maximum
value computed with the dwt_max_level() function for the smaller dimension of the
input data.

Example:

>>> import pywt, numpy
>>> coeffs = pywt.wavedec2(numpy.ones((8,8)), 'db1', level=2)
>>> cA2, (cH2, cV2, cD2), (cH1, cV1, cD1) = coeffs
>>> print cA2
[[4. 4.]
[4. 4.]]

2D multilevel reconstruction using waverec2

pywt.waverec2(coeffs, wavelet[, mode=’sym’])
Performs multilevel reconstruction from the given coefficients set.

Parameters

• coeffs – Coefficients set must be in the form like that from wavedec2() decomposition:

[cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

Example:

>>> import pywt, numpy
>>> coeffs = pywt.wavedec2(numpy.ones((4,4)), 'db1')
>>> print "levels:", len(coeffs)-1
levels: 2
>>> print pywt.waverec2(coeffs, 'db1')
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

10.1.6 Stationary Wavelet Transform

Stationary Wavelet Transform (SWT), also known as Undecimated wavelet transform or Algorithme à trous is a
translation-invariance modification of the Discrete Wavelet Transform that does not decimate coefficients at every
transformation level.

32 Chapter 10. Contents

http://en.wikipedia.org/wiki/Stationary_wavelet_transform

PyWavelets Documentation, Release 0.3.0

Multilevel swt

pywt.swt(data, wavelet, level[, start_level=0])
Performs multilevel Stationary Wavelet Transform.

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• level (int) – Required transform level. See the swt_max_level() function.

• start_level (int) – The level at which the decomposition will begin (it allows to skip
a given number of transform steps and compute coefficients starting directly from the
start_level)

Returns list of coefficient pairs in the form:

[(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]

where n is the level value.

If m = start_level is given, then the beginning m steps are skipped:

[(cAm+n, cDm+n), ..., (cAm+1, cDm+1), (cAm, cDm)]

Multilevel swt2

pywt.swt2(data, wavelet, level[, start_level=0])
Performs multilevel 2D Stationary Wavelet Transform.

Parameters

• data – 2D array with input data.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• level – Number of decomposition steps to perform.

• start_level – The level at which the decomposition will begin.

The result is a set of coefficients arrays over the range of decomposition levels:

[
(cA_n,

(cH_n, cV_n, cD_n)
),
(cA_n+1,

(cH_n+1, cV_n+1, cD_n+1)
),
...,
(cA_n+level,

(cH_n+level, cV_n+level, cD_n+level)
)

]

10.1. API Reference 33

PyWavelets Documentation, Release 0.3.0

where cA is approximation, cH is horizontal details, cV is vertical details, cD is diagonal details, n is start_level
and m equals n+level.

Maximum decomposition level - swt_max_level

pywt.swt_max_level(input_len)
Calculates the maximum level of Stationary Wavelet Transform for data of given length.

Parameters input_len – Input data length.

10.1.7 Wavelet Packets

New in version 0.2.

Version 0.2 of PyWavelets includes many new features and improvements. One of such new feature is a two-
dimensional wavelet packet transform structure that is almost completely sharing programming interface with the
one-dimensional tree structure.

In order to achieve this simplification, a new inheritance scheme was used in which a BaseNode base node class is a
superclass for both Node and Node2D node classes.

The node classes are used as data wrappers and can be organized in trees (binary trees for 1D transform case and
quad-trees for the 2D one). They are also superclasses to the WaveletPacket class and WaveletPacket2D
class that are used as the decomposition tree roots and contain a couple additional methods.

The below diagram illustrates the inheritance tree:

• BaseNode - common interface for 1D and 2D nodes:

– Node - data carrier node in a 1D decomposition tree

* WaveletPacket - 1D decomposition tree root node

– Node2D - data carrier node in a 2D decomposition tree

* WaveletPacket2D - 2D decomposition tree root node

BaseNode - a common interface of WaveletPacket and WaveletPacket2D

class pywt.BaseNode
class pywt.Node(BaseNode)
class pywt.WaveletPacket(Node)
class pywt.Node2D(BaseNode)
class pywt.WaveletPacket2D(Node2D)

Note: The BaseNode is a base class for Node and Node2D. It should not be used directly unless creating a
new transformation type. It is included here to document the common interface of 1D and 2D node an wavelet
packet transform classes.

__init__(parent, data, node_name)

Parameters

• parent – parent node. If parent is None then the node is considered detached.

• data – data associated with the node. 1D or 2D numeric array, depending on the trans-
form type.

34 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• node_name – a name identifying the coefficients type. See Node.node_name and
Node2D.node_name for information on the accepted subnodes names.

data
Data associated with the node. 1D or 2D numeric array (depends on the transform type).

parent
Parent node. Used in tree navigation. None for root node.

wavelet
Wavelet used for decomposition and reconstruction. Inherited from parent node.

mode
Signal extension mode for the dwt() (dwt2()) and idwt() (idwt2()) decomposition and recon-
struction functions. Inherited from parent node.

level
Decomposition level of the current node. 0 for root (original data), 1 for the first decomposition level, etc.

path
Path string defining position of the node in the decomposition tree.

node_name
Node name describing data coefficients type of the current subnode.

See Node.node_name and Node2D.node_name.

maxlevel
Maximum allowed level of decomposition. Evaluated from parent or child nodes.

is_empty
Checks if data attribute is None.

has_any_subnode
Checks if node has any subnodes (is not a leaf node).

decompose()
Performs Discrete Wavelet Transform on the data and returns transform coefficients.

reconstruct([update=False])
Performs Inverse Discrete Wavelet Transform on subnodes coefficients and returns reconstructed data for
the current level.

Parameters update – If set, the data attribute will be updated with the reconstructed value.

Note: Descends to subnodes and recursively calls reconstruct() on them.

get_subnode(part[, decompose=True])
Returns subnode or None (see decomposition flag description).

Parameters

• part – Subnode name

• decompose – If True and subnode does not exist, it will be created using coefficients
from the DWT decomposition of the current node.

__getitem__(path)
Used to access nodes in the decomposition tree by string path.

Parameters path – Path string composed from valid node names. See Node.node_name
and Node2D.node_name for node naming convention.

10.1. API Reference 35

PyWavelets Documentation, Release 0.3.0

Similar to get_subnode() method with decompose=True, but can access nodes on any level in the
decomposition tree.

If node does not exist yet, it will be created by decomposition of its parent node.

__setitem__(path, data)
Used to set node or node’s data in the decomposition tree. Nodes are identified by string path.

Parameters

• path – Path string composed from valid node names. See Node.node_name and
Node2D.node_name for node naming convention.

• data – numeric array or BaseNode subclass.

__delitem__(path)
Used to delete node from the decomposition tree.

Parameters path – Path string composed from valid node names. See Node.node_name
and Node2D.node_name for node naming convention.

get_leaf_nodes([decompose=False])
Traverses through the decomposition tree and collects leaf nodes (nodes without any subnodes).

Parameters decompose – If decompose is True, the method will try to decompose the tree
up to the maximum level.

walk(self, func[, args=()[, kwargs={}[, decompose=True]]])
Traverses the decomposition tree and calls func(node, *args, **kwargs) on every node. If func
returns True, descending to subnodes will continue.

Parameters

• func – callable accepting BaseNode as the first param and optional positional and key-
word arguments:

func(node, *args, **kwargs)

• decompose – If decompose is True (default), the method will also try to decompose the
tree up to the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

walk_depth(self, func[, args=()[, kwargs={}[, decompose=False]]])
Similar to walk() but traverses the tree in depth-first order.

Parameters

• func – callable accepting BaseNode as the first param and optional positional and key-
word arguments:

func(node, *args, **kwargs)

• decompose – If decompose is True, the method will also try to decompose the tree up
to the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

36 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

WaveletPacket and WaveletPacket tree Node

class pywt.Node(BaseNode)
class pywt.WaveletPacket(Node)

node_name
Node name describing data coefficients type of the current subnode.

For WaveletPacket case it is just as in dwt():

• a - approximation coefficients

• d - details coefficients

decompose()

See also:

•dwt() for 1D Discrete Wavelet Transform output coefficients.

class pywt.WaveletPacket(Node)

__init__(data, wavelet[, mode=’sym’[, maxlevel=None]])
Parameters

• data – data associated with the node. 1D numeric array.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode for the dwt() and idwt() decomposition and recon-
struction functions.

• maxlevel – Maximum allowed level of decomposition. If not specified it will be calcu-
lated based on the wavelet and data length using pywt.dwt_max_level().

get_level(level[, order=”natural”[, decompose=True]])
Collects nodes from the given level of decomposition.

Parameters

• level – Specifies decomposition level from which the nodes will be collected.

• order – Specifies nodes order - natural (natural) or frequency (freq).

• decompose – If set then the method will try to decompose the data up to the specified
level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to
False, only existing nodes will be returned.

WaveletPacket2D and WaveletPacket2D tree Node2D

class pywt.Node2D(BaseNode)
class pywt.WaveletPacket2D(Node2D)

node_name

10.1. API Reference 37

PyWavelets Documentation, Release 0.3.0

For WaveletPacket2D case it is just as in dwt2():

• a - approximation coefficients (LL)

• h - horizontal detail coefficients (LH)

• v - vertical detail coefficients (HL)

• d - diagonal detail coefficients (HH)

decompose()

See also:

dwt2() for 2D Discrete Wavelet Transform output coefficients.

expand_2d_path(self, path):

class pywt.WaveletPacket2D(Node2D)

__init__(data, wavelet[, mode=’sym’[, maxlevel=None]])
Parameters

• data – data associated with the node. 2D numeric array.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode for the dwt() and idwt() decomposition and recon-
struction functions.

• maxlevel – Maximum allowed level of decomposition. If not specified it will be calcu-
lated based on the wavelet and data length using pywt.dwt_max_level().

get_level(level[, order=”natural”[, decompose=True]])
Collects nodes from the given level of decomposition.

Parameters

• level – Specifies decomposition level from which the nodes will be collected.

• order – Specifies nodes order - natural (natural) or frequency (freq).

• decompose – If set then the method will try to decompose the data up to the specified
level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to
False, only existing nodes will be returned.

10.1.8 Thresholding functions

The thresholding helper module implements the most popular signal thresholding functions.

Hard thresholding

hard(data, value[, substitute=0])
Hard thresholding. Replace all data values with substitute where their absolute value is less than the value
param.

Data values with absolute value greater or equal to the thresholding value stay untouched.

38 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

Soft thresholding

soft(data, value[, substitute=0])
Soft thresholding.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

Greater

greater(data, value[, substitute=0])
Replace data with substitute where data is below the thresholding value.

Greater data values pass untouched.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

Less

less(data, value[, substitute=0])
Replace data with substitute where data is above the thresholding value.

Less data values pass untouched.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

10.1. API Reference 39

PyWavelets Documentation, Release 0.3.0

10.1.9 Other functions

Single-level n-dimensional Discrete Wavelet Transform.

pywt.dwtn(data, wavelet[, mode=’sym’])
Performs single-level n-dimensional Discrete Wavelet Transform.

Parameters

• data – n-dimensional array

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

Results are arranged in a dictionary, where key specifies the transform type on each dimension and value is a
n-dimensional coefficients array.

For example, for a 2D case the result will look something like this:

{
'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
'ad': <coeffs> # H(LH) - approx. on 1st dim, det. on 2nd dim
'da': <coeffs> # V(HL) - det. on 1st dim, approx. on 2nd dim
'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim

}

Integrating wavelet functions - intwave()

pywt.intwave(wavelet[, precision=8])
Integration of wavelet function approximations as well as any other signals can be performed using the
pywt.intwave() function.

The result of the call depends on the wavelet argument:

•for orthogonal wavelets - an integral of the wavelet function specified on an x-grid:

[int_psi, x] = intwave(wavelet, precision)

•for other wavelets - integrals of decomposition and reconstruction wavelet functions and a corresponding
x-grid:

[int_psi_d, int_psi_r, x] = intwave(wavelet, precision)

•for a tuple of coefficients data and a x-grid - an integral of function and the given x-grid is returned (the
x-grid is used for computations).:

[int_function, x] = intwave((data, x), precision)

Example:

>>> import pywt
>>> wavelet1 = pywt.Wavelet('db2')
>>> [int_psi, x] = pywt.intwave(wavelet1, precision=5)
>>> wavelet2 = pywt.Wavelet('bior1.3')
>>> [int_psi_d, int_psi_r, x] = pywt.intwave(wavelet2, precision=5)

40 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

Central frequency of psi wavelet function

pywt.centfrq(wavelet[, precision=8])
pywt.centfrq((function_approx, x))

Parameters

• wavelet – Wavelet, wavelet name string or (wavelet function approx., x grid) pair

• precision – Precision that will be used for wavelet function approximation computed
with the Wavelet.wavefun() method.

10.2 Usage examples

The following examples are used as doctest regression tests written using reST markup. They are included in the
documentation since they contain various useful examples illustrating how to use and how not to use PyWavelets.

10.2.1 The Wavelet object

Wavelet families and builtin Wavelets names

Wavelet objects are really a handy carriers of a bunch of DWT-specific data like quadrature mirror filters and some
general properties associated with them.

At first let’s go through the methods of creating a Wavelet object. The easiest and the most convenient way is to use
builtin named Wavelets.

These wavelets are organized into groups called wavelet families. The most commonly used families are:

>>> import pywt
>>> pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']

The wavelist() function with family name passed as an argument is used to obtain the list of wavelet names in
each family.

>>> for family in pywt.families():
... print "%s family:" % family, ', '.join(pywt.wavelist(family))
haar family: haar
db family: db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, db11, db12, db13, db14, db15, db16, db17, db18, db19, db20
sym family: sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, sym11, sym12, sym13, sym14, sym15, sym16, sym17, sym18, sym19, sym20
coif family: coif1, coif2, coif3, coif4, coif5
bior family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8
rbio family: rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8
dmey family: dmey

To get the full list of builtin wavelets’ names just use the wavelist() with no argument. As you can see currently
there are 76 builtin wavelets.

>>> len(pywt.wavelist())
76

Creating Wavelet objects

Now when we know all the names let’s finally create a Wavelet object:

10.2. Usage examples 41

PyWavelets Documentation, Release 0.3.0

>>> w = pywt.Wavelet('db3')

So.. that’s it.

Wavelet properties

But what can we do with Wavelet objects? Well, they carry some interesting information.

First, let’s try printing a Wavelet object. This shows a brief information about its name, its family name and some
properties like orthogonality and symmetry.

>>> print w
Wavelet db3

Family name: Daubechies
Short name: db
Filters length: 6
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric

But the most important information are the wavelet filters coefficients, which are used in Discrete Wavelet Transform.
These coefficients can be obtained via the dec_lo, Wavelet.dec_hi, rec_lo and rec_hi attributes, which
corresponds to lowpass and highpass decomposition filters and lowpass and highpass reconstruction filters respec-
tively:

>>> def print_array(arr):
... print "[%s]" % ", ".join(["%.14f" % x for x in arr])

>>> print_array(w.dec_lo)
[0.03522629188210, -0.08544127388224, -0.13501102001039, 0.45987750211933, 0.80689150931334, 0.33267055295096]
>>> print_array(w.dec_hi)
[-0.33267055295096, 0.80689150931334, -0.45987750211933, -0.13501102001039, 0.08544127388224, 0.03522629188210]
>>> print_array(w.rec_lo)
[0.33267055295096, 0.80689150931334, 0.45987750211933, -0.13501102001039, -0.08544127388224, 0.03522629188210]
>>> print_array(w.rec_hi)
[0.03522629188210, 0.08544127388224, -0.13501102001039, -0.45987750211933, 0.80689150931334, -0.33267055295096]

Another way to get the filters data is to use the filter_bank attribute, which returns all four filters in a tuple:

>>> w.filter_bank == (w.dec_lo, w.dec_hi, w.rec_lo, w.rec_hi)
True

Other Wavelet’s properties are:

Wavelet name, short_family_name and family_name:

>>> print w.name
db3
>>> print w.short_family_name
db
>>> print w.family_name
Daubechies

• Decomposition (dec_len) and reconstruction (rec_len) filter lengths:

>>> int(w.dec_len) # int() is for normalizing longs and ints for doctest
6
>>> int(w.rec_len)
6

42 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• Orthogonality (orthogonal) and biorthogonality (biorthogonal):

>>> w.orthogonal
True
>>> w.biorthogonal
True

• Symmetry (symmetry):

>>> print w.symmetry
asymmetric

• Number of vanishing moments for the scaling function phi (vanishing_moments_phi) and the
wavelet function psi (vanishing_moments_psi) associated with the filters:

>>> w.vanishing_moments_phi
0
>>> w.vanishing_moments_psi
3

Now when we know a bit about the builtin Wavelets, let’s see how to create custom Wavelets objects. These can be
done in two ways:

1. Passing the filter bank object that implements the filter_bank attribute. The attribute must return four filters
coefficients.

>>> class MyHaarFilterBank(object):
... @property
... def filter_bank(self):
... from math import sqrt
... return ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])

>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=MyHaarFilterBank())

2. Passing the filters coefficients directly as the filter_bank parameter.

>>> from math import sqrt
>>> my_filter_bank = ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])
>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=my_filter_bank)

Note that such custom wavelets will not have all the properties set to correct values:

>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:
Filters length: 2
Orthogonal: False
Biorthogonal: False
Symmetry: unknown

You can however set a few of them on your own:

>>> my_wavelet.orthogonal = True
>>> my_wavelet.biorthogonal = True

>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:

10.2. Usage examples 43

PyWavelets Documentation, Release 0.3.0

Short name:
Filters length: 2
Orthogonal: True
Biorthogonal: True
Symmetry: unknown

And now... the wavefun!

We all know that the fun with wavelets is in wavelet functions. Now what would be this package without a tool to
compute wavelet and scaling functions approximations?

This is the purpose of the wavefun() method, which is used to approximate scaling function (phi) and wavelet
function (psi) at the given level of refinement, based on the filters coefficients.

The number of returned values varies depending on the wavelet’s orthogonality property. For orthogonal wavelets the
result is tuple with scaling function, wavelet function and xgrid coordinates.

>>> w = pywt.Wavelet('sym3')
>>> w.orthogonal
True
>>> (phi, psi, x) = w.wavefun(level=5)

For biorthogonal (non-orthogonal) wavelets different scaling and wavelet functions are used for decomposition and
reconstruction, and thus five elements are returned: decomposition scaling and wavelet functions approximations,
reconstruction scaling and wavelet functions approximations, and the xgrid.

>>> w = pywt.Wavelet('bior1.3')
>>> w.orthogonal
False
>>> (phi_d, psi_d, phi_r, psi_r, x) = w.wavefun(level=5)

See also:

You can find live examples of wavefun() usage and images of all the built-in wavelets on the Wavelet Properties
Browser page.

10.2.2 Signal Extension Modes

Import pywt first

>>> import pywt

>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

List of available signal extension modes:

>>> print pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

Test that dwt() and idwt() can be performed using every mode:

44 Chapter 10. Contents

http://wavelets.pybytes.com
http://wavelets.pybytes.com

PyWavelets Documentation, Release 0.3.0

>>> x = [1,2,1,5,-1,8,4,6]
>>> for mode in pywt.MODES.modes:
... cA, cD = pywt.dwt(x, 'db2', mode)
... print "Mode:", mode
... print "cA:", format_array(cA)
... print "cD:", format_array(cD)
... print "Reconstruction:", pywt.idwt(cA, cD, 'db2', mode)
Mode: zpd
cA: [-0.03468 1.73309 3.40612 6.32929 6.95095]
cD: [-0.12941 -2.156 -5.95035 -1.21545 -1.8625]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: cpd
cA: [1.2848 1.73309 3.40612 6.32929 7.51936]
cD: [-0.48296 -2.156 -5.95035 -1.21545 0.25882]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: sym
cA: [1.76777 1.73309 3.40612 6.32929 7.77817]
cD: [-0.61237 -2.156 -5.95035 -1.21545 1.22474]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: ppd
cA: [6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: sp1
cA: [-0.51764 1.73309 3.40612 6.32929 7.45001]
cD: [0. -2.156 -5.95035 -1.21545 0.]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: per
cA: [4.05317 3.05257 2.85381 8.42522]
cD: [0.18947 4.18258 4.33738 2.60428]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]

Invalid mode name should rise a ValueError:

>>> pywt.dwt([1,2,3,4], 'db2', 'invalid')
Traceback (most recent call last):
...
ValueError: Unknown mode name 'invalid'.

You can also refer to modes via MODES class attributes:

>>> for mode_name in ['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']:
... mode = getattr(pywt.MODES, mode_name)
... cA, cD = pywt.dwt([1,2,1,5,-1,8,4,6], 'db2', mode)
... print "Mode:", mode, "(%s)" % mode_name
... print "cA:", format_array(cA)
... print "cD:", format_array(cD)
... print "Reconstruction:", pywt.idwt(cA, cD, 'db2', mode)
Mode: 0 (zpd)
cA: [-0.03468 1.73309 3.40612 6.32929 6.95095]
cD: [-0.12941 -2.156 -5.95035 -1.21545 -1.8625]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 2 (cpd)
cA: [1.2848 1.73309 3.40612 6.32929 7.51936]
cD: [-0.48296 -2.156 -5.95035 -1.21545 0.25882]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 1 (sym)
cA: [1.76777 1.73309 3.40612 6.32929 7.77817]
cD: [-0.61237 -2.156 -5.95035 -1.21545 1.22474]

10.2. Usage examples 45

PyWavelets Documentation, Release 0.3.0

Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 4 (ppd)
cA: [6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 3 (sp1)
cA: [-0.51764 1.73309 3.40612 6.32929 7.45001]
cD: [0. -2.156 -5.95035 -1.21545 0.]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 5 (per)
cA: [4.05317 3.05257 2.85381 8.42522]
cD: [0.18947 4.18258 4.33738 2.60428]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]

The default mode is sym:

>>> cA, cD = pywt.dwt(x, 'db2')
>>> print cA
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt(cA, cD, 'db2')
[1. 2. 1. 5. -1. 8. 4. 6.]

And using a keyword argument:

>>> cA, cD = pywt.dwt(x, 'db2', mode='sym')
>>> print cA
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt(cA, cD, 'db2')
[1. 2. 1. 5. -1. 8. 4. 6.]

10.2.3 DWT and IDWT

Discrete Wavelet Transform

Let’s do a Discrete Wavelet Transform of a sample data x using the db2 wavelet. It’s simple..

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, 'db2')

And the approximation and details coefficients are in cA and cD respectively:

>>> print cA
[5.65685425 7.39923721 0.22414387 3.33677403 7.77817459]
>>> print cD
[-2.44948974 -1.60368225 -4.44140056 -0.41361256 1.22474487]

Inverse Discrete Wavelet Transform

Now let’s do an opposite operation - Inverse Discrete Wavelet Transform:

46 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print pywt.idwt(cA, cD, 'db2')
[3. 7. 1. 1. -2. 5. 4. 6.]

Voilà! That’s it!

More Examples

Now let’s experiment with the dwt() some more. For example let’s pass a Wavelet object instead of the wavelet
name and specify signal extension mode (the default is sym) for the border effect handling:

>>> w = pywt.Wavelet('sym3')
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='cpd')
>>> print cA
[4.38354585 3.80302657 7.31813271 -0.58565539 4.09727044 7.81994027]
>>> print cD
[-1.33068221 -2.78795192 -3.16825651 -0.67715519 -0.09722957 -0.07045258]

Note that the output coefficients arrays length depends not only on the input data length but also on the :class:Wavelet
type (particularly on its filters lenght that are used in the transformation).

To find out what will be the output data size use the dwt_coeff_len() function:

>>> # int() is for normalizing Python integers and long integers for documentation tests
>>> int(pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode='sym'))
6
>>> int(pywt.dwt_coeff_len(len(x), w, 'sym'))
6
>>> len(cA)
6

Looks fine. (And if you expected that the output length would be a half of the input data length, well, that’s the
trade-off that allows for the perfect reconstruction...).

The third argument of the dwt_coeff_len() is the already mentioned signal extension mode (please refer to the
PyWavelets’ documentation for the modes description). Currently there are six extension modes available:

>>> pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

>>> [int(pywt.dwt_coeff_len(len(x), w.dec_len, mode)) for mode in pywt.MODES.modes]
[6, 6, 6, 6, 6, 4]

As you see in the above example, the per (periodization) mode is slightly different from the others. It’s aim when
doing the DWT transform is to output coefficients arrays that are half of the length of the input data.

Knowing that, you should never mix the periodization mode with other modes when doing DWT and IDWT. Otherwise,
it will produce invalid results:

>>> x
[3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='per')
>>> print pywt.idwt(cA, cD, 'sym3', 'sym') # invalid mode
[1. 1. -2. 5.]
>>> print pywt.idwt(cA, cD, 'sym3', 'per')
[3. 7. 1. 1. -2. 5. 4. 6.]

10.2. Usage examples 47

PyWavelets Documentation, Release 0.3.0

Tips & tricks

Passing None instead of coefficients data to idwt()

Now some tips & tricks. Passing None as one of the coefficient arrays parameters is similar to passing a zero-filled
array. The results are simply the same:

>>> print pywt.idwt([1,2,0,1], None, 'db2', 'sym')
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print pywt.idwt([1, 2, 0, 1], [0, 0, 0, 0], 'db2', 'sym')
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print pywt.idwt(None, [1, 2, 0, 1], 'db2', 'sym')
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

>>> print pywt.idwt([0, 0, 0, 0], [1, 2, 0, 1], 'db2', 'sym')
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

Remember that only one argument at a time can be None:

>>> print pywt.idwt(None, None, 'db2', 'sym')
Traceback (most recent call last):
...
ValueError: At least one coefficient parameter must be specified.

Coefficients data size in idwt

When doing the IDWT transform, usually the coefficient arrays must have the same size.

>>> print pywt.idwt([1, 2, 3, 4, 5], [1, 2, 3, 4], 'db2', 'sym')
Traceback (most recent call last):
...
ValueError: Coefficients arrays must have the same size.

But for some applications like multilevel DWT and IDWT it is sometimes convenient to allow for a small departure
from this behaviour. When the correct_size flag is set, the approximation coefficients array can be larger from the
details coefficient array by one element:

>>> print pywt.idwt([1, 2, 3, 4, 5], [1, 2, 3, 4], 'db2', 'sym', correct_size=True)
[1.76776695 0.61237244 3.18198052 0.61237244 4.59619408 0.61237244]

>>> print pywt.idwt([1, 2, 3, 4], [1, 2, 3, 4, 5], 'db2', 'sym', correct_size=True)
Traceback (most recent call last):
...
ValueError: Coefficients arrays must satisfy (0 <= len(cA) - len(cD) <= 1).

Not every coefficient array can be used in IDWT. In the following example the idwt() will fail because the input
arrays are invalid - they couldn’t be created as a result of DWT, because the minimal output length for dwt using db4
wavelet and the sym mode is 4, not 3:

>>> pywt.idwt([1,2,4], [4,1,3], 'db4', 'sym')
Traceback (most recent call last):
...
ValueError: Invalid coefficient arrays length for specified wavelet. Wavelet and mode must be the same as used for decomposition.

48 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> int(pywt.dwt_coeff_len(1, pywt.Wavelet('db4').dec_len, 'sym'))
4

10.2.4 Multilevel DWT, IDWT and SWT

Multilevel DWT decomposition

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> db1 = pywt.Wavelet('db1')
>>> cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
>>> print cA3
[8.83883476]
>>> print cD3
[-0.35355339]
>>> print cD2
[4. -3.5]
>>> print cD1
[-2.82842712 0. -4.94974747 -1.41421356]

>>> pywt.dwt_max_level(len(x), db1)
3

>>> cA2, cD2, cD1 = pywt.wavedec(x, db1, mode='cpd', level=2)

Multilevel IDWT reconstruction

>>> coeffs = pywt.wavedec(x, db1)
>>> print pywt.waverec(coeffs, db1)
[3. 7. 1. 1. -2. 5. 4. 6.]

Multilevel SWT decomposition

>>> x = [3, 7, 1, 3, -2, 6, 4, 6]
>>> (cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=2)
>>> print cA1
[7.07106781 5.65685425 2.82842712 0.70710678 2.82842712 7.07106781

7.07106781 6.36396103]
>>> print cD1
[-2.82842712 4.24264069 -1.41421356 3.53553391 -5.65685425 1.41421356
-1.41421356 2.12132034]

>>> print cA2
[7. 4.5 4. 5.5 7. 9.5 10. 8.5]
>>> print cD2
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> [(cA2, cD2)] = pywt.swt(cA1, db1, level=1, start_level=1)
>>> print cA2
[7. 4.5 4. 5.5 7. 9.5 10. 8.5]
>>> print cD2
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

10.2. Usage examples 49

PyWavelets Documentation, Release 0.3.0

>>> coeffs = pywt.swt(x, db1)
>>> len(coeffs)
3
>>> pywt.swt_max_level(len(x))
3

10.2.5 Wavelet Packets

Import pywt

>>> import pywt

>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

Create Wavelet Packet structure

Ok, let’s create a sample WaveletPacket:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

The input data and decomposition coefficients are stored in the WaveletPacket.data attribute:

>>> print wp.data
[1, 2, 3, 4, 5, 6, 7, 8]

Nodes are identified by paths. For the root node the path is ’’ and the decomposition level is 0.

>>> print repr(wp.path)
''
>>> print wp.level
0

The maxlevel, if not given as param in the constructor, is automatically computed:

>>> print wp['ad'].maxlevel
3

Traversing WP tree:

Accessing subnodes:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

First check what is the maximum level of decomposition:

>>> print wp.maxlevel
3

and try accessing subnodes of the WP tree:

50 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• 1st level:

>>> print wp['a'].data
[2.12132034 4.94974747 7.77817459 10.60660172]
>>> print wp['a'].path
a

• 2nd level:

>>> print wp['aa'].data
[5. 13.]
>>> print wp['aa'].path
aa

• 3rd level:

>>> print wp['aaa'].data
[12.72792206]
>>> print wp['aaa'].path
aaa

Ups, we have reached the maximum level of decomposition and got an IndexError:

>>> print wp['aaaa'].data
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Now try some invalid path:

>>> print wp['ac']
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'd'], not 'c'.

which just yielded a ValueError.

Accessing Node’s attributes:

WaveletPacket object is a tree data structure, which evaluates to a set of Node objects. WaveletPacket is just
a special subclass of the Node class (which in turn inherits from the BaseNode).

Tree nodes can be accessed using the obj[x] (Node.__getitem__()) operator. Each tree node has a set of at-
tributes: data, path, node_name, parent, level, maxlevel and mode.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

>>> print wp['ad'].data
[-2. -2.]

>>> print wp['ad'].path
ad

>>> print wp['ad'].node_name
d

>>> print wp['ad'].parent.path
a

10.2. Usage examples 51

PyWavelets Documentation, Release 0.3.0

>>> print wp['ad'].level
2

>>> print wp['ad'].maxlevel
3

>>> print wp['ad'].mode
sym

Collecting nodes

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

We can get all nodes on the particular level either in natural order:

>>> print [node.path for node in wp.get_level(3, 'natural')]
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']

or sorted based on the band frequency (freq):

>>> print [node.path for node in wp.get_level(3, 'freq')]
['aaa', 'aad', 'add', 'ada', 'dda', 'ddd', 'dad', 'daa']

Note that WaveletPacket.get_level() also performs automatic decomposition until it reaches the specified
level.

Reconstructing data from Wavelet Packets:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

Now create a new Wavelet Packet and set its nodes with some data.

>>> new_wp = pywt.WaveletPacket(data=None, wavelet='db1', mode='sym')

>>> new_wp['aa'] = wp['aa'].data
>>> new_wp['ad'] = [-2., -2.]

For convenience, Node.data gets automatically extracted from the Node object:

>>> new_wp['d'] = wp['d']

And reconstruct the data from the aa, ad and d packets.

>>> print new_wp.reconstruct(update=False)
[1. 2. 3. 4. 5. 6. 7. 8.]

If the update param in the reconstruct method is set to False, the node’s data will not be updated.

>>> print new_wp.data
None

Otherwise, the data attribute will be set to the reconstructed value.

52 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print new_wp.reconstruct(update=True)
[1. 2. 3. 4. 5. 6. 7. 8.]
>>> print new_wp.data
[1. 2. 3. 4. 5. 6. 7. 8.]

>>> print [n.path for n in new_wp.get_leaf_nodes(False)]
['aa', 'ad', 'd']

>>> print [n.path for n in new_wp.get_leaf_nodes(True)]
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']

Removing nodes from Wavelet Packet tree:

Let’s create a sample data:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

First, start with a tree decomposition at level 2. Leaf nodes in the tree are:

>>> dummy = wp.get_level(2)
>>> for n in wp.get_leaf_nodes(False):
... print n.path, format_array(n.data)
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]

>>> node = wp['ad']
>>> print node
ad: [-2. -2.]

To remove a node from the WP tree, use Python’s del obj[x] (Node.__delitem__):

>>> del wp['ad']

The leaf nodes that left in the tree are:

>>> for n in wp.get_leaf_nodes():
... print n.path, format_array(n.data)
aa [5. 13.]
da [-1. -1.]
dd [0. 0.]

And the reconstruction is:

>>> print wp.reconstruct()
[2. 3. 2. 3. 6. 7. 6. 7.]

Now restore the deleted node value.

>>> wp['ad'].data = node.data

Printing leaf nodes and tree reconstruction confirms the original state of the tree:

>>> for n in wp.get_leaf_nodes(False):
... print n.path, format_array(n.data)
aa [5. 13.]
ad [-2. -2.]

10.2. Usage examples 53

PyWavelets Documentation, Release 0.3.0

da [-1. -1.]
dd [0. 0.]

>>> print wp.reconstruct()
[1. 2. 3. 4. 5. 6. 7. 8.]

Lazy evaluation:

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes
as presented in this example.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

1. At first the wp’s attribute a is None

>>> print wp.a
None

Remember that you should not rely on the attribute access.

2. At first attempt to access the node it is computed via decomposition of its parent node (the wp object itself).

>>> print wp['a']
a: [2.12132034 4.94974747 7.77817459 10.60660172]

3. Now the wp.a is set to the newly created node:

>>> print wp.a
a: [2.12132034 4.94974747 7.77817459 10.60660172]

And so is wp.d:

>>> print wp.d
d: [-0.70710678 -0.70710678 -0.70710678 -0.70710678]

10.2.6 2D Wavelet Packets

Import pywt

>>> import pywt
>>> import numpy

Create 2D Wavelet Packet structure

Start with preparing test data:

>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, 'd')
>>> print x
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]

54 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

Now create a 2D Wavelet Packet object:

>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='sym')

The input data and decomposition coefficients are stored in the WaveletPacket2D.data attribute:

>>> print wp.data
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

Nodes are identified by paths. For the root node the path is ’’ and the decomposition level is 0.

>>> print repr(wp.path)
''
>>> print wp.level
0

The WaveletPacket2D.maxlevel, if not given in the constructor, is automatically computed based on the data
size:

>>> print wp.maxlevel
3

Traversing WP tree:

Wavelet Packet nodes are arranged in a tree. Each node in a WP tree is uniquely identified and addressed by a path
string.

In the 1D WaveletPacket case nodes were accessed using ’a’ (approximation) and ’d’ (details) path names
(each node has two 1D children).

Because now we deal with a bit more complex structure (each node has four children), we have four basic path names
based on the dwt 2D output convention to address the WP2D structure:

• a - LL, low-low coefficients

• h - LH, low-high coefficients

• v - HL, high-low coefficients

• d - HH, high-high coefficients

In other words, subnode naming corresponds to the dwt2() function output naming convention (as wavelet packet
transform is based on the dwt2 transform):

cA(LL)	cH(LH)

(cA, (cH, cV, cD)) <---> -------------------
| | |

10.2. Usage examples 55

PyWavelets Documentation, Release 0.3.0

| cV(HL) | cD(HH) |
| | |

(fig.1: DWT 2D output and interpretation)

Knowing what the nodes names are, we can now access them using the indexing operator obj[x]
(WaveletPacket2D.__getitem__()):

>>> print wp['a'].data
[[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

>>> print wp['h'].data
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

>>> print wp['v'].data
[[-1. -1. -1. -1.]
[-1. -1. -1. -1.]
[-1. -1. -1. -1.]
[-1. -1. -1. -1.]]

>>> print wp['d'].data
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

Similarly, a subnode of a subnode can be accessed by:

>>> print wp['aa'].data
[[10. 26.]
[10. 26.]]

Indexing base WaveletPacket2D (as well as 1D WaveletPacket) using compound path is just the same as
indexing WP subnode:

>>> node = wp['a']
>>> print node['a'].data
[[10. 26.]
[10. 26.]]

>>> print wp['a']['a'].data is wp['aa'].data
True

Following down the decomposition path:

>>> print wp['aaa'].data
[[36.]]
>>> print wp['aaaa'].data
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Ups, we have reached the maximum level of decomposition for the ’aaaa’ path, which btw. was:

>>> print wp.maxlevel
3

56 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

Now try some invalid path:

>>> print wp['f']
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'h', 'v', 'd'], not 'f'.

Accessing Node2D’s attributes:

WaveletPacket2D is a tree data structure, which evaluates to a set of Node2D objects. WaveletPacket2D
is just a special subclass of the Node2D class (which in turn inherits from a BaseNode, just like with Node and
WaveletPacket for the 1D case.).

>>> print wp['av'].data
[[-4. -4.]
[-4. -4.]]

>>> print wp['av'].path
av

>>> print wp['av'].node_name
v

>>> print wp['av'].parent.path
a

>>> print wp['av'].parent.data
[[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

>>> print wp['av'].level
2

>>> print wp['av'].maxlevel
3

>>> print wp['av'].mode
sym

Collecting nodes

We can get all nodes on the particular level using the WaveletPacket2D.get_level() method:

• 0 level - the root wp node:

>>> len(wp.get_level(0))
1
>>> print [node.path for node in wp.get_level(0)]
['']

• 1st level of decomposition:

>>> len(wp.get_level(1))
4

10.2. Usage examples 57

PyWavelets Documentation, Release 0.3.0

>>> print [node.path for node in wp.get_level(1)]
['a', 'h', 'v', 'd']

• 2nd level of decomposition:

>>> len(wp.get_level(2))
16
>>> paths = [node.path for node in wp.get_level(2)]
>>> for i, path in enumerate(paths):
... print path,
... if (i+1) % 4 == 0: print
aa ah av ad
ha hh hv hd
va vh vv vd
da dh dv dd

• 3rd level of decomposition:

>>> print len(wp.get_level(3))
64
>>> paths = [node.path for node in wp.get_level(3)]
>>> for i, path in enumerate(paths):
... print path,
... if (i+1) % 8 == 0: print
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd

Note that WaveletPacket2D.get_level() performs automatic decomposition until it reaches the given level.

Reconstructing data from Wavelet Packets:

Let’s create a new empty 2D Wavelet Packet structure and set its nodes values with known data from the previous
examples:

>>> new_wp = pywt.WaveletPacket2D(data=None, wavelet='db1', mode='sym')

>>> new_wp['vh'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vv'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vd'] = [[0.0, 0.0], [0.0, 0.0]]

>>> new_wp['a'] = [[3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
... [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0]]
>>> new_wp['d'] = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
... [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]

For convenience, Node2D.data gets automatically extracted from the base Node2D object:

>>> new_wp['h'] = wp['h'] # all zeros

Note: just remember to not assign to the node.data parameter directly (todo).

And reconstruct the data from the a, d, vh, vv, vd and h packets (Note that va node was not set and the WP tree is
“not complete” - the va branch will be treated as zero-array):

58 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print new_wp.reconstruct(update=False)
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Now set the va node with the known values and do the reconstruction again:

>>> new_wp['va'] = wp['va'].data # [[-2.0, -2.0], [-2.0, -2.0]]
>>> print new_wp.reconstruct(update=False)
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

which is just the same as the base sample data x.

Of course we can go the other way and remove nodes from the tree. If we delete the va node, again, we get the “not
complete” tree from one of the previous examples:

>>> del new_wp['va']
>>> print new_wp.reconstruct(update=False)
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Just restore the node before next examples.

>>> new_wp['va'] = wp['va'].data

If the update param in the WaveletPacket2D.reconstruct() method is set to False, the node’s
Node2D.data attribute will not be updated.

>>> print new_wp.data
None

Otherwise, the WaveletPacket2D.data attribute will be set to the reconstructed value.

>>> print new_wp.reconstruct(update=True)
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

10.2. Usage examples 59

PyWavelets Documentation, Release 0.3.0

>>> print new_wp.data
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

Since we have an interesting WP structure built, it is a good occasion to present the
WaveletPacket2D.get_leaf_nodes() method, which collects non-zero leaf nodes from the WP tree:

>>> print [n.path for n in new_wp.get_leaf_nodes()]
['a', 'h', 'va', 'vh', 'vv', 'vd', 'd']

Passing the decompose=True parameter to the method will force the WP object to do a full decomposition up to the
maximum level of decomposition:

>>> paths = [n.path for n in new_wp.get_leaf_nodes(decompose=True)]
>>> len(paths)
64
>>> for i, path in enumerate(paths):
... print path,
... if (i+1) % 8 == 0: print
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd

Lazy evaluation:

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes
as presented in this example.

>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8)
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='sym')

1. At first the wp’s attribute a is None

>>> print wp.a
None

Remember that you should not rely on the attribute access.

2. During the first attempt to access the node it is computed via decomposition of its parent node (the wp object
itself).

>>> print wp['a']
a: [[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

60 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

3. Now the a is set to the newly created node:

>>> print wp.a
a: [[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

And so is wp.d:

>>> print wp.d
d: [[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

10.2.7 Gotchas

PyWavelets utilizes NumPy under the hood. That’s why handling the data containing None values can be surprising.
None values are converted to ‘not a number’ (numpy.NaN) values:

>>> import numpy, pywt
>>> x = [None, None]
>>> mode = 'sym'
>>> wavelet = 'db1'
>>> cA, cD = pywt.dwt(x, wavelet, mode)
>>> numpy.all(numpy.isnan(cA))
True
>>> numpy.all(numpy.isnan(cD))
True
>>> rec = pywt.idwt(cA, cD, wavelet, mode)
>>> numpy.all(numpy.isnan(rec))
True

10.3 Development notes

This section contains information on building and installing PyWavelets from source code as well as instructions for
preparing the build environment on Windows and Linux.

10.3.1 Preparing Windows build environment

To start developing PyWavelets code on Windows you will have to install a C compiler and prepare the build environ-
ment.

Installing Windows SDK C/C++ compiler

Microsoft Visual C++ 2008 (Microsoft Visual Studio 9.0) is the compiler that is suitable for building extensions for
Python 2.6, 2.7, 3.0, 3.1 and 3.2 (both 32 and 64 bit).

Note: For reference:

• the MSC v.1500 in the Python version string is Microsoft Visual C++ 2008 (Microsoft Visual Studio 9.0 with
msvcr90.dll runtime)

10.3. Development notes 61

PyWavelets Documentation, Release 0.3.0

• MSC v.1600 is MSVC 2010 (10.0 with msvcr100.dll runtime)

• MSC v.1700 is MSVC 2011 (11.0)

Python 2.7.3 (default, Apr 10 2012, 23:31:26) [MSC v.1500 32 bit (Intel)] on win32
Python 3.2 (r32:88445, Feb 20 2011, 21:30:00) [MSC v.1500 64 bit (AMD64)] on win32

To get started first download, extract and install Microsoft Windows SDK for Windows 7 and .NET Frame-
work 3.5 SP1 from http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-
BEA146E4FAE1&displaylang=en.

There are several ISO images on the site, so just grab the one that is suitable for your platform:

• GRMSDK_EN_DVD.iso for 32-bit x86 platform

• GRMSDKX_EN_DVD.iso for 64-bit AMD64 platform (AMD64 is the codename for 64-bit CPU architecture,
not the processor manufacturer)

After installing the SDK and before compiling the extension you have to configure some environment variables.

For 32-bit build execute the util/setenv_build32.bat script in the cmd window:

rem Configure the environment for 32-bit builds.
rem Use "vcvars32.bat" for a 32-bit build.
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat"
rem Convince setup.py to use the SDK tools.
set MSSdk=1
setenv /x86 /release
set DISTUTILS_USE_SDK=1

For 64-bit use util/setenv_build64.bat:

rem Configure the environment for 64-bit builds.
rem Use "vcvars32.bat" for a 32-bit build.
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars64.bat"
rem Convince setup.py to use the SDK tools.
set MSSdk=1
setenv /x64 /release
set DISTUTILS_USE_SDK=1

See also http://wiki.cython.org/64BitCythonExtensionsOnWindows.

MinGW C/C++ compiler

MinGW distribution can be downloaded from http://sourceforge.net/projects/mingwbuilds/.

In order to change the settings and use MinGW as the default compiler, edit or create a Distutils configuration file
c:\Python2*\Lib\distutils\distutils.cfg and place the following entry in it:

[build]
compiler = mingw32

You can also take a look at Cython’s “Installing MinGW on Windows” page at
http://wiki.cython.org/InstallingOnWindows for more info.

Note: Python 2.7/3.2 distutils package is incompatible with the current version (4.7+) of MinGW (MinGW dropped
the -mno-cygwin flag, which is still passed by distutils).

To use MinGW to compile Python extensions you have to patch the distutils/cygwinccompiler.py library
module and remove every occurrence of -mno-cygwin.

62 Chapter 10. Contents

http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-BEA146E4FAE1&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-BEA146E4FAE1&displaylang=en
http://wiki.cython.org/64BitCythonExtensionsOnWindows
http://sourceforge.net/projects/mingwbuilds/
http://wiki.cython.org/InstallingOnWindows

PyWavelets Documentation, Release 0.3.0

See http://bugs.python.org/issue12641 bug report for more information on the issue.

Next steps

After completing these steps continue with Installing build dependencies.

10.3.2 Preparing Linux build environment

There is a good chance that you already have a working build environment. Just skip steps that you don’t need to
execute.

Installing basic build tools

Note that the example below uses aptitude package manager, which is specific to Debian and Ubuntu Linux
distributions. Use your favourite package manager to install these packages on your OS.

aptitude install build-essential gcc python-dev git-core

Next steps

After completing these steps continue with Installing build dependencies.

10.3.3 Installing build dependencies

Setting up Python virtual environment

A good practice is to create a separate Python virtual environment for each project. If you don’t have virtualenv yet,
install and activate it using:

curl -O https://raw.github.com/pypa/virtualenv/master/virtualenv.py
python virtualenv.py <name_of_the_venv>
. <name_of_the_venv>/bin/activate

Installing Cython

Use pip (http://pypi.python.org/pypi/pip) to install Cython:

pip install Cython>=0.16

Installing numpy

Use pip to install numpy:

pip install numpy

10.3. Development notes 63

http://bugs.python.org/issue12641
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/pip
http://cython.org/
http://numpy.scipy.org/

PyWavelets Documentation, Release 0.3.0

It takes some time to compile numpy, so it might be more convenient to install it from a binary release.

Note: Installing numpy in a virtual environment on Windows is not straightforward.

It is recommended to download a suitable binary .exe release from http://www.scipy.org/Download/ and install it
using easy_install (i.e. easy_install numpy-1.6.2-win32-superpack-python2.7.exe).

Note: You can find binaries for 64-bit Windows on http://www.lfd.uci.edu/~gohlke/pythonlibs/.

Installing Sphinx

Sphinx is a documentation tool that converts reStructuredText files into nicely looking html documentation. Install it
with:

pip install Sphinx

10.3.4 Building and installing PyWavelets

Installing from source code

Go to https://github.com/nigma/pywt GitHub project page, fork and clone the repository or use the upstream repository
to get the source code:

git clone https://github.com/nigma/pywt.git PyWavelets

Activate your Python virtual environment, go to the cloned source directory and type the following commands to build
and install the package:

python setup.py build
python setup.py install

To verify the installation run the following command:

python setup.py test

To build docs:

cd doc
make html

Installing a development version

You can also install directly from the source repository:

pip install -e git+https://github.com/nigma/pywt.git#egg=PyWavelets

or:

pip install PyWavelets==dev

64 Chapter 10. Contents

http://www.scipy.org/Download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://sphinx.pocoo.org
https://github.com/nigma/pywt

PyWavelets Documentation, Release 0.3.0

Installing a regular release from PyPi

A regular release can be installed with pip or easy_install:

pip install PyWavelets

10.3.5 Testing

Continous integration with Travis-CI

The project is using Travis-CI service for continous integration and testing.

Current build status is: If you are submitting a patch or pull request please make sure it does not break the build.

Running tests locally

Tests are implemented with nose, so use one of:

$ nosetests pywt

>>> pywt.test()

Running tests with Tox

There’s also a config file for running tests with Tox (pip install tox). To for example run tests for Python 2.7
and Python 3.4 use:

tox -e py27,py34

For more information see the Tox documentation.

10.3.6 Something not working?

If these instructions are not clear or you need help setting up your development environment, go ahead and ask on the
PyWavelets discussion group at http://groups.google.com/group/pywavelets or open a ticket on GitHub.

10.4 Resources

10.4.1 Code

The GitHub repository is now the main code repository.

If you are using the Mercurial repository at Bitbucket, please switch to Git/GitHub and follow for development updates.

10.4.2 Questions and bug reports

Use GitHub Issues or PyWavelets discussions group to post questions and open tickets.

10.4. Resources 65

https://travis-ci.org/PyWavelets/pywt
http://nose.readthedocs.org/en/latest/
http://tox.testrun.org/
http://tox.testrun.org/
http://groups.google.com/group/pywavelets
https://github.com/nigma/pywt
https://github.com/PyWavelets/pywt
https://github.com/PyWavelets/pywt/issues
http://groups.google.com/group/pywavelets

PyWavelets Documentation, Release 0.3.0

10.4.3 Wavelet Properties Browser

Browse properties and graphs of wavelets included in PyWavelets on wavelets.pybytes.com.

10.4.4 Articles

• Denoising: wavelet thresholding

• Wavelet Regression in Python

10.5 PyWavelets

10.5.1 API Reference

Wavelets

Wavelet families()

pywt.families()
Returns a list of available built-in wavelet families. Currently the built-in families are:

•Haar (haar)

•Daubechies (db)

•Symlets (sym)

•Coiflets (coif)

•Biorthogonal (bior)

•Reverse biorthogonal (rbio)

•“Discrete” FIR approximation of Meyer wavelet (dmey)

Example:

>>> import pywt
>>> print pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']

Built-in wavelets - wavelist()

pywt.wavelist([family])
The wavelist() function returns a list of names of the built-in wavelets.

If the family name is None then names of all the built-in wavelets are returned. Otherwise the function returns
names of wavelets that belong to the given family.

Example:

>>> import pywt
>>> print pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5']

Custom user wavelets are also supported through the Wavelet object constructor as described below.

66 Chapter 10. Contents

http://wavelets.pybytes.com/
http://blancosilva.wordpress.com/teaching/mathematical-imaging/denoising-wavelet-thresholding/
http://jseabold.net/blog/2012/02/wavelet-regression-in-python.html

PyWavelets Documentation, Release 0.3.0

Wavelet object

class pywt.Wavelet(name[, filter_bank=None])
Describes properties of a wavelet identified by the specified wavelet name. In order to use a built-in wavelet the
name parameter must be a valid wavelet name from the pywt.wavelist() list.

Custom Wavelet objects can be created by passing a user-defined filters set with the filter_bank parameter.

Parameters

• name – Wavelet name

• filter_bank – Use a user supplied filter bank instead of a built-in Wavelet.

The filter bank object can be a list of four filters coefficients or an object with filter_bank attribute, which
returns a list of such filters in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

Wavelet objects can also be used as a base filter banks. See section on using custom wavelets for more informa-
tion.

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')

name
Wavelet name.

short_name
Short wavelet name.

dec_lo
Decomposition filter values.

dec_hi
Decomposition filter values.

rec_lo
Reconstruction filter values.

rec_hi
Reconstruction filter values.

dec_len
Decomposition filter length.

rec_len
Reconstruction filter length.

filter_bank
Returns filters list for the current wavelet in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

inverse_filter_bank
Returns list of reverse wavelet filters coefficients. The mapping from the filter_coeffs list is as follows:

[rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-1]]

short_family_name
Wavelet short family name

10.5. PyWavelets 67

PyWavelets Documentation, Release 0.3.0

family_name
Wavelet family name

orthogonal
Set if wavelet is orthogonal

biorthogonal
Set if wavelet is biorthogonal

symmetry
asymmetric, near symmetric, symmetric

vanishing_moments_psi
Number of vanishing moments for the wavelet function

vanishing_moments_phi
Number of vanishing moments for the scaling function

Example:

>>> def format_array(arr):
... return "[%s]" % ", ".join(["%.14f" % x for x in arr])

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')
>>> print wavelet
Wavelet db1
Family name: Daubechies
Short name: db
Filters length: 2
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric

>>> print format_array(wavelet.dec_lo), format_array(wavelet.dec_hi)
[0.70710678118655, 0.70710678118655] [-0.70710678118655, 0.70710678118655]
>>> print format_array(wavelet.rec_lo), format_array(wavelet.rec_hi)
[0.70710678118655, 0.70710678118655] [0.70710678118655, -0.70710678118655]

Approximating wavelet and scaling functions - Wavelet.wavefun()
Wavelet.wavefun(level)

Changed in version 0.2: The time (space) localisation of approximation function points was added.

The wavefun()method can be used to calculate approximations of scaling function (phi) and wavelet function
(psi) at the given level of refinement.

For orthogonalwavelets returns approximations of scaling function and wavelet function with corresponding
x-grid coordinates:

[phi, psi, x] = wavelet.wavefun(level)

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('db2')
>>> phi, psi, x = wavelet.wavefun(level=5)

For other (biorthogonal but not orthogonal) wavelets returns approximations of scaling and wavelet
function both for decomposition and reconstruction and corresponding x-grid coordinates:

68 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

[phi_d, psi_d, phi_r, psi_r, x] = wavelet.wavefun(level)

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('bior3.5')
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)

See also:

You can find live examples of wavefun() usage and images of all the built-in wavelets on the Wavelet Prop-
erties Browser page.

Using custom wavelets

PyWavelets comes with a long list of the most popular wavelets built-in and ready to use. If you need to use a
specific wavelet which is not included in the list it is very easy to do so. Just pass a list of four filters or an object with
a filter_bank attribute as a filter_bank argument to the Wavelet constructor.

The filters list, either in a form of a simple Python list or returned via the filter_bank attribute, must be in the
following order:

• lowpass decomposition filter

• highpass decomposition filter

• lowpass reconstruction filter

• highpass reconstruction filter

just as for the filter_bank attribute of the Wavelet class.

The Wavelet object created in this way is a standard Wavelet instance.

The following example illustrates the way of creating custom Wavelet objects from plain Python lists of filter coeffi-
cients and a filter bank-like objects.

Example:

>>> import pywt, math
>>> c = math.sqrt(2)/2
>>> dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
>>> filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
>>> myWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)
>>>
>>> class HaarFilterBank(object):
... @property
... def filter_bank(self):
... c = math.sqrt(2)/2
... dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
... return [dec_lo, dec_hi, rec_lo, rec_hi]
>>> filter_bank = HaarFilterBank()
>>> myOtherWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)

Signal extension modes

Because the most common and practical way of representing digital signals in computer science is with finite arrays
of values, some extrapolation of the input data has to be performed in order to extend the signal before computing the
Discrete Wavelet Transform using the cascading filter banks algorithm.

10.5. PyWavelets 69

http://wavelets.pybytes.com
http://wavelets.pybytes.com

PyWavelets Documentation, Release 0.3.0

Depending on the extrapolation method, significant artifacts at the signal’s borders can be introduced during that
process, which in turn may lead to inaccurate computations of the DWT at the signal’s ends.

PyWavelets provides several methods of signal extrapolation that can be used to minimize this negative effect:

• zpd - zero-padding - signal is extended by adding zero samples:

... 0 0 | x1 x2 ... xn | 0 0 ...

• cpd - constant-padding - border values are replicated:

... x1 x1 | x1 x2 ... xn | xn xn ...

• sym - symmetric-padding - signal is extended by mirroring samples:

... x2 x1 | x1 x2 ... xn | xn xn-1 ...

• ppd - periodic-padding - signal is treated as a periodic one:

... xn-1 xn | x1 x2 ... xn | x1 x2 ...

• sp1 - smooth-padding - signal is extended according to the first derivatives calculated on the edges
(straight line)

DWT performed for these extension modes is slightly redundant, but ensures perfect reconstruction. To receive the
smallest possible number of coefficients, computations can be performed with the periodization mode:

• per - periodization - is like periodic-padding but gives the smallest possible number of decompo-
sition coefficients. IDWT must be performed with the same mode.

Example:

>>> import pywt
>>> print pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

Notice that you can use any of the following ways of passing wavelet and mode parameters:

>>> import pywt
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], pywt.Wavelet('db2'), pywt.MODES.sp1)

Note: Extending data in context of PyWavelets does not mean reallocation of the data in computer’s physical memory
and copying values, but rather computing the extra values only when they are needed. This feature saves extra memory
and CPU resources and helps to avoid page swapping when handling relatively big data arrays on computers with low
physical memory.

Discrete Wavelet Transform (DWT)

Wavelet transform has recently become a very popular when it comes to analysis, de-noising and compression of sig-
nals and images. This section describes functions used to perform single- and multilevel Discrete Wavelet Transforms.

Single level dwt

pywt.dwt(data, wavelet[, mode=’sym’])
The dwt() function is used to perform single level, one dimensional Discrete Wavelet Transform.

70 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

(cA, cD) = dwt(data, wavelet, mode='sym')

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

The transform coefficients are returned as two arrays containing approximation (cA) and detail (cD) coefficients
respectively. Length of returned arrays depends on the selected signal extension mode - see the signal extension
modes section for the list of available options and the dwt_coeff_len() function for information on getting
the expected result length:

•for all modes except periodization:

len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)

•for periodization mode ("per"):

len(cA) == len(cD) == ceil(len(data) / 2)

Example:

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db1')
>>> print cA
[2.12132034 4.94974747 7.77817459]
>>> print cD
[-0.70710678 -0.70710678 -0.70710678]

Multilevel decomposition using wavedec

pywt.wavedec(data, wavelet, mode=’sym’, level=None)
The wavedec() function performs 1D multilevel Discrete Wavelet Transform decomposition of given signal
and returns ordered list of coefficients arrays in the form:

[cA_n, cD_n, cD_n-1, ..., cD2, cD1],

where n denotes the level of decomposition. The first element (cA_n) of the result is approximation coefficients
array and the following elements (cD_n - cD_1) are details coefficients arrays.

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

10.5. PyWavelets 71

PyWavelets Documentation, Release 0.3.0

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

• level – Number of decomposition steps to perform. If the level is None, then the full
decomposition up to the level computed with dwt_max_level() function for the given
data and wavelet lengths is performed.

Example:

>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
>>> cA2, cD2, cD1 = coeffs
>>> print cD1
[-0.70710678 -0.70710678 -0.70710678 -0.70710678]
>>> print cD2
[-2. -2.]
>>> print cA2
[5. 13.]

Partial Discrete Wavelet Transform data decomposition downcoef

pywt.downcoef(part, data, wavelet[, mode=’sym’[, level=1]])
Similar to dwt(), but computes only one set of coefficients. Useful when you need only approximation or only
details at the given level.

Parameters

• part – decomposition type. For a computes approximation coefficients, for d - details
coefficients.

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

• level – Number of decomposition steps to perform.

Maximum decomposition level - dwt_max_level

pywt.dwt_max_level(data_len, filter_len)
The dwt_max_level() function can be used to compute the maximum useful level of decomposition for the
given input data length and wavelet filter length.

The returned value equals to:

floor(log(data_len/(filter_len-1)) / log(2))

Although the maximum decomposition level can be quite high for long signals, usually smaller values are chosen
depending on the application.

The filter_len can be either an int or Wavelet object for convenience.

Example:

72 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> import pywt
>>> w = pywt.Wavelet('sym5')
>>> print pywt.dwt_max_level(data_len=1000, filter_len=w.dec_len)
6
>>> print pywt.dwt_max_level(1000, w)
6

Result coefficients length - dwt_coeff_len

pywt.dwt_coeff_len(data_len, filter_len, mode)

Based on the given input data length, Wavelet decomposition filter length and signal extension mode, the
dwt_coeff_len() function calculates length of resulting coefficients arrays that would be created while perform-
ing dwt() transform.

For periodization mode this equals:

ceil(data_len / 2)

which is the lowest possible length guaranteeing perfect reconstruction.

For other modes:

floor((data_len + filter_len - 1) / 2)

The filter_len can be either an int or Wavelet object for convenience.

Inverse Discrete Wavelet Transform (IDWT)

Single level idwt

pywt.idwt(cA, cD, wavelet[, mode=’sym’[, correct_size=0]])
The idwt() function reconstructs data from the given coefficients by performing single level Inverse Discrete
Wavelet Transform.

Parameters

• cA – Approximation coefficients.

• cD – Detail coefficients.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when DWT was performed in periodization mode.

• correct_size – Typically, cA and cD coefficients lists must have equal lengths in order
to perform IDWT. Setting correct_size to True allows cA to be greater in size by one element
compared to the cD size. This option is very useful when doing multilevel decomposition
and reconstruction (as for example with the wavedec() function) of non-dyadic length
signals when such minor differences can occur at various levels of IDWT.

Example:

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')

10.5. PyWavelets 73

PyWavelets Documentation, Release 0.3.0

>>> print pywt.idwt(cA, cD, 'db2', 'sp1')
[1. 2. 3. 4. 5. 6.]

One of the neat features of idwt() is that one of the cA and cD arguments can be set to None. In that situation
the reconstruction will be performed using only the other one. Mathematically speaking, this is equivalent to
passing a zero-filled array as one of the arguments.

Example:

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
>>> A = pywt.idwt(cA, None, 'db2', 'sp1')
>>> D = pywt.idwt(None, cD, 'db2', 'sp1')
>>> print A + D
[1. 2. 3. 4. 5. 6.]

Multilevel reconstruction using waverec
pywt.waverec(coeffs, wavelet[, mode=’sym’])

Performs multilevel reconstruction of signal from the given list of coefficients.

Parameters

• coeffs – Coefficients list must be in the form like returned by wavedec() decomposi-
tion function, which is:

[cAn, cDn, cDn-1, ..., cD2, cD1]

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

Example:

>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db2', level=2)
>>> print pywt.waverec(coeffs, 'db2')
[1. 2. 3. 4. 5. 6. 7. 8.]

Direct reconstruction with upcoef
pywt.upcoef(part, coeffs, wavelet[, level=1[, take=0]])

Direct reconstruction from coefficients.

Parameters

• part – Defines the input coefficients type:

– ‘a’ - approximations reconstruction is performed

– ‘d’ - details reconstruction is performed

• coeffs – Coefficients array to reconstruct.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• level – If level value is specified then a multilevel reconstruction is performed (first re-
construction is of type specified by part and all the following ones with part type a)

74 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• take – If take is specified then only the central part of length equal to the take parameter
value is returned.

Example:

>>> import pywt
>>> data = [1,2,3,4,5,6]
>>> (cA, cD) = pywt.dwt(data, 'db2', 'sp1')
>>> print pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
[-0.25 -0.4330127 1. 2. 3. 4. 5.
6. 1.78589838 -1.03108891]

>>> n = len(data)
>>> print pywt.upcoef('a',cA,'db2',take=n) + pywt.upcoef('d',cD,'db2',take=n)
[1. 2. 3. 4. 5. 6.]

2D Forward and Inverse Discrete Wavelet Transform

Single level dwt2

pywt.dwt2(data, wavelet[, mode=’sym’])
The dwt2() function performs single level 2D Discrete Wavelet Transform.

Parameters

• data – 2D input data.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when DWT was performed in periodization mode.

Returns one average and three details 2D coefficients arrays. The coefficients arrays are organized in tuples in
the following form:

(cA, (cH, cV, cD))

where cA, cH, cV, cD denote approximation, horizontal detail, vertical detail and diagonal detail coefficients
respectively.

The relation to the other common data layout where all the approximation and details coefficients are stored in one big
2D array is as follows:

cA(LL)	cH(LH)

(cA, (cH, cV, cD)) <---> -------------------
cV(HL)	cD(HH)

PyWavelets does not follow this pattern because of pure practical reasons of simple access to particular type of the
output coefficients.

Example:

>>> import pywt, numpy
>>> data = numpy.ones((4,4), dtype=numpy.float64)
>>> coeffs = pywt.dwt2(data, 'haar')

10.5. PyWavelets 75

PyWavelets Documentation, Release 0.3.0

>>> cA, (cH, cV, cD) = coeffs
>>> print cA
[[2. 2.]
[2. 2.]]
>>> print cV
[[0. 0.]
[0. 0.]]

Single level idwt2

pywt.idwt2(coeffs, wavelet[, mode=’sym’])
The idwt2() function reconstructs data from the given coefficients set by performing single level 2D Inverse
Discrete Wavelet Transform.

Parameters

• coeffs – A tuple with approximation coefficients and three details coefficients 2D arrays
like from dwt2():

(cA, (cH, cV, cD))

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details. This is only important when the dwt() was performed in the periodization mode.

Example:

>>> import pywt, numpy
>>> data = numpy.array([[1,2], [3,4]], dtype=numpy.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> print pywt.idwt2(coeffs, 'haar')
[[1. 2.]
[3. 4.]]

2D multilevel decomposition using wavedec2

pywt.wavedec2(data, wavelet[, mode=’sym’[, level=None]])
Performs multilevel 2D Discrete Wavelet Transform decomposition and returns coefficients list:

[cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]

where n denotes the level of decomposition and cA, cH, cV and cD are approximation, horizontal detail, vertical
detail and diagonal detail coefficients arrays respectively.

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

76 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

• level – Decomposition level. This should not be greater than the reasonable maximum
value computed with the dwt_max_level() function for the smaller dimension of the
input data.

Example:

>>> import pywt, numpy
>>> coeffs = pywt.wavedec2(numpy.ones((8,8)), 'db1', level=2)
>>> cA2, (cH2, cV2, cD2), (cH1, cV1, cD1) = coeffs
>>> print cA2
[[4. 4.]
[4. 4.]]

2D multilevel reconstruction using waverec2

pywt.waverec2(coeffs, wavelet[, mode=’sym’])
Performs multilevel reconstruction from the given coefficients set.

Parameters

• coeffs – Coefficients set must be in the form like that from wavedec2() decomposition:

[cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

Example:

>>> import pywt, numpy
>>> coeffs = pywt.wavedec2(numpy.ones((4,4)), 'db1')
>>> print "levels:", len(coeffs)-1
levels: 2
>>> print pywt.waverec2(coeffs, 'db1')
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Stationary Wavelet Transform

Stationary Wavelet Transform (SWT), also known as Undecimated wavelet transform or Algorithme à trous is a
translation-invariance modification of the Discrete Wavelet Transform that does not decimate coefficients at every
transformation level.

Multilevel swt

pywt.swt(data, wavelet, level[, start_level=0])
Performs multilevel Stationary Wavelet Transform.

10.5. PyWavelets 77

http://en.wikipedia.org/wiki/Stationary_wavelet_transform

PyWavelets Documentation, Release 0.3.0

Parameters

• data – Input signal can be NumPy array, Python list or other iterable object. Both single
and double precision floating-point data types are supported and the output type depends on
the input type. If the input data is not in one of these types it will be converted to the default
double precision data format before performing computations.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• level (int) – Required transform level. See the swt_max_level() function.

• start_level (int) – The level at which the decomposition will begin (it allows to skip
a given number of transform steps and compute coefficients starting directly from the
start_level)

Returns list of coefficient pairs in the form:

[(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]

where n is the level value.

If m = start_level is given, then the beginning m steps are skipped:

[(cAm+n, cDm+n), ..., (cAm+1, cDm+1), (cAm, cDm)]

Multilevel swt2

pywt.swt2(data, wavelet, level[, start_level=0])
Performs multilevel 2D Stationary Wavelet Transform.

Parameters

• data – 2D array with input data.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• level – Number of decomposition steps to perform.

• start_level – The level at which the decomposition will begin.

The result is a set of coefficients arrays over the range of decomposition levels:

[
(cA_n,

(cH_n, cV_n, cD_n)
),
(cA_n+1,

(cH_n+1, cV_n+1, cD_n+1)
),
...,
(cA_n+level,

(cH_n+level, cV_n+level, cD_n+level)
)

]

where cA is approximation, cH is horizontal details, cV is vertical details, cD is diagonal details, n is start_level
and m equals n+level.

78 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

Maximum decomposition level - swt_max_level

pywt.swt_max_level(input_len)
Calculates the maximum level of Stationary Wavelet Transform for data of given length.

Parameters input_len – Input data length.

Wavelet Packets

New in version 0.2.

Version 0.2 of PyWavelets includes many new features and improvements. One of such new feature is a two-
dimensional wavelet packet transform structure that is almost completely sharing programming interface with the
one-dimensional tree structure.

In order to achieve this simplification, a new inheritance scheme was used in which a BaseNode base node class is a
superclass for both Node and Node2D node classes.

The node classes are used as data wrappers and can be organized in trees (binary trees for 1D transform case and
quad-trees for the 2D one). They are also superclasses to the WaveletPacket class and WaveletPacket2D
class that are used as the decomposition tree roots and contain a couple additional methods.

The below diagram illustrates the inheritance tree:

• BaseNode - common interface for 1D and 2D nodes:

– Node - data carrier node in a 1D decomposition tree

* WaveletPacket - 1D decomposition tree root node

– Node2D - data carrier node in a 2D decomposition tree

* WaveletPacket2D - 2D decomposition tree root node

BaseNode - a common interface of WaveletPacket and WaveletPacket2D

class pywt.BaseNode
class pywt.Node(BaseNode)
class pywt.WaveletPacket(Node)
class pywt.Node2D(BaseNode)
class pywt.WaveletPacket2D(Node2D)

Note: The BaseNode is a base class for Node and Node2D. It should not be used directly unless creating a
new transformation type. It is included here to document the common interface of 1D and 2D node an wavelet
packet transform classes.

__init__(parent, data, node_name)

Parameters

• parent – parent node. If parent is None then the node is considered detached.

• data – data associated with the node. 1D or 2D numeric array, depending on the trans-
form type.

• node_name – a name identifying the coefficients type. See Node.node_name and
Node2D.node_name for information on the accepted subnodes names.

10.5. PyWavelets 79

PyWavelets Documentation, Release 0.3.0

data
Data associated with the node. 1D or 2D numeric array (depends on the transform type).

parent
Parent node. Used in tree navigation. None for root node.

wavelet
Wavelet used for decomposition and reconstruction. Inherited from parent node.

mode
Signal extension mode for the dwt() (dwt2()) and idwt() (idwt2()) decomposition and recon-
struction functions. Inherited from parent node.

level
Decomposition level of the current node. 0 for root (original data), 1 for the first decomposition level, etc.

path
Path string defining position of the node in the decomposition tree.

node_name
Node name describing data coefficients type of the current subnode.

See Node.node_name and Node2D.node_name.

maxlevel
Maximum allowed level of decomposition. Evaluated from parent or child nodes.

is_empty
Checks if data attribute is None.

has_any_subnode
Checks if node has any subnodes (is not a leaf node).

decompose()
Performs Discrete Wavelet Transform on the data and returns transform coefficients.

reconstruct([update=False])
Performs Inverse Discrete Wavelet Transform on subnodes coefficients and returns reconstructed data for
the current level.

Parameters update – If set, the data attribute will be updated with the reconstructed value.

Note: Descends to subnodes and recursively calls reconstruct() on them.

get_subnode(part[, decompose=True])
Returns subnode or None (see decomposition flag description).

Parameters

• part – Subnode name

• decompose – If True and subnode does not exist, it will be created using coefficients
from the DWT decomposition of the current node.

__getitem__(path)
Used to access nodes in the decomposition tree by string path.

Parameters path – Path string composed from valid node names. See Node.node_name
and Node2D.node_name for node naming convention.

Similar to get_subnode() method with decompose=True, but can access nodes on any level in the
decomposition tree.

If node does not exist yet, it will be created by decomposition of its parent node.

80 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

__setitem__(path, data)
Used to set node or node’s data in the decomposition tree. Nodes are identified by string path.

Parameters

• path – Path string composed from valid node names. See Node.node_name and
Node2D.node_name for node naming convention.

• data – numeric array or BaseNode subclass.

__delitem__(path)
Used to delete node from the decomposition tree.

Parameters path – Path string composed from valid node names. See Node.node_name
and Node2D.node_name for node naming convention.

get_leaf_nodes([decompose=False])
Traverses through the decomposition tree and collects leaf nodes (nodes without any subnodes).

Parameters decompose – If decompose is True, the method will try to decompose the tree
up to the maximum level.

walk(self, func[, args=()[, kwargs={}[, decompose=True]]])
Traverses the decomposition tree and calls func(node, *args, **kwargs) on every node. If func
returns True, descending to subnodes will continue.

Parameters

• func – callable accepting BaseNode as the first param and optional positional and key-
word arguments:

func(node, *args, **kwargs)

• decompose – If decompose is True (default), the method will also try to decompose the
tree up to the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

walk_depth(self, func[, args=()[, kwargs={}[, decompose=False]]])
Similar to walk() but traverses the tree in depth-first order.

Parameters

• func – callable accepting BaseNode as the first param and optional positional and key-
word arguments:

func(node, *args, **kwargs)

• decompose – If decompose is True, the method will also try to decompose the tree up
to the maximum level.

Args arguments to pass to the func

Kwargs keyword arguments to pass to the func

WaveletPacket and WaveletPacket tree Node

class pywt.Node(BaseNode)
class pywt.WaveletPacket(Node)

10.5. PyWavelets 81

PyWavelets Documentation, Release 0.3.0

node_name
Node name describing data coefficients type of the current subnode.

For WaveletPacket case it is just as in dwt():

• a - approximation coefficients

• d - details coefficients

decompose()

See also:

•dwt() for 1D Discrete Wavelet Transform output coefficients.

class pywt.WaveletPacket(Node)

__init__(data, wavelet[, mode=’sym’[, maxlevel=None]])
Parameters

• data – data associated with the node. 1D numeric array.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode for the dwt() and idwt() decomposition and recon-
struction functions.

• maxlevel – Maximum allowed level of decomposition. If not specified it will be calcu-
lated based on the wavelet and data length using pywt.dwt_max_level().

get_level(level[, order=”natural”[, decompose=True]])
Collects nodes from the given level of decomposition.

Parameters

• level – Specifies decomposition level from which the nodes will be collected.

• order – Specifies nodes order - natural (natural) or frequency (freq).

• decompose – If set then the method will try to decompose the data up to the specified
level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to
False, only existing nodes will be returned.

WaveletPacket2D and WaveletPacket2D tree Node2D

class pywt.Node2D(BaseNode)
class pywt.WaveletPacket2D(Node2D)

node_name

For WaveletPacket2D case it is just as in dwt2():

• a - approximation coefficients (LL)

• h - horizontal detail coefficients (LH)

• v - vertical detail coefficients (HL)

82 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• d - diagonal detail coefficients (HH)

decompose()

See also:

dwt2() for 2D Discrete Wavelet Transform output coefficients.

expand_2d_path(self, path):

class pywt.WaveletPacket2D(Node2D)

__init__(data, wavelet[, mode=’sym’[, maxlevel=None]])
Parameters

• data – data associated with the node. 2D numeric array.

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode for the dwt() and idwt() decomposition and recon-
struction functions.

• maxlevel – Maximum allowed level of decomposition. If not specified it will be calcu-
lated based on the wavelet and data length using pywt.dwt_max_level().

get_level(level[, order=”natural”[, decompose=True]])
Collects nodes from the given level of decomposition.

Parameters

• level – Specifies decomposition level from which the nodes will be collected.

• order – Specifies nodes order - natural (natural) or frequency (freq).

• decompose – If set then the method will try to decompose the data up to the specified
level.

If nodes at the given level are missing (i.e. the tree is partially decomposed) and the decompose is set to
False, only existing nodes will be returned.

Thresholding functions

The thresholding helper module implements the most popular signal thresholding functions.

Hard thresholding

hard(data, value[, substitute=0])
Hard thresholding. Replace all data values with substitute where their absolute value is less than the value
param.

Data values with absolute value greater or equal to the thresholding value stay untouched.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

10.5. PyWavelets 83

PyWavelets Documentation, Release 0.3.0

Returns array

Soft thresholding

soft(data, value[, substitute=0])
Soft thresholding.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

Greater

greater(data, value[, substitute=0])
Replace data with substitute where data is below the thresholding value.

Greater data values pass untouched.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

Less

less(data, value[, substitute=0])
Replace data with substitute where data is above the thresholding value.

Less data values pass untouched.

Parameters

• data – numeric data

• value – thresholding value

• substitute – substitute value

Returns array

Other functions

Single-level n-dimensional Discrete Wavelet Transform.

pywt.dwtn(data, wavelet[, mode=’sym’])
Performs single-level n-dimensional Discrete Wavelet Transform.

Parameters

84 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

• data – n-dimensional array

• wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the
wavelist() list or a Wavelet object instance.

• mode – Signal extension mode to deal with the border distortion problem. See MODES for
details.

Results are arranged in a dictionary, where key specifies the transform type on each dimension and value is a
n-dimensional coefficients array.

For example, for a 2D case the result will look something like this:

{
'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
'ad': <coeffs> # H(LH) - approx. on 1st dim, det. on 2nd dim
'da': <coeffs> # V(HL) - det. on 1st dim, approx. on 2nd dim
'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim

}

Integrating wavelet functions - intwave()

pywt.intwave(wavelet[, precision=8])
Integration of wavelet function approximations as well as any other signals can be performed using the
pywt.intwave() function.

The result of the call depends on the wavelet argument:

•for orthogonal wavelets - an integral of the wavelet function specified on an x-grid:

[int_psi, x] = intwave(wavelet, precision)

•for other wavelets - integrals of decomposition and reconstruction wavelet functions and a corresponding
x-grid:

[int_psi_d, int_psi_r, x] = intwave(wavelet, precision)

•for a tuple of coefficients data and a x-grid - an integral of function and the given x-grid is returned (the
x-grid is used for computations).:

[int_function, x] = intwave((data, x), precision)

Example:

>>> import pywt
>>> wavelet1 = pywt.Wavelet('db2')
>>> [int_psi, x] = pywt.intwave(wavelet1, precision=5)
>>> wavelet2 = pywt.Wavelet('bior1.3')
>>> [int_psi_d, int_psi_r, x] = pywt.intwave(wavelet2, precision=5)

Central frequency of psi wavelet function

pywt.centfrq(wavelet[, precision=8])
pywt.centfrq((function_approx, x))

Parameters

• wavelet – Wavelet, wavelet name string or (wavelet function approx., x grid) pair

10.5. PyWavelets 85

PyWavelets Documentation, Release 0.3.0

• precision – Precision that will be used for wavelet function approximation computed
with the Wavelet.wavefun() method.

10.5.2 Usage examples

The following examples are used as doctest regression tests written using reST markup. They are included in the
documentation since they contain various useful examples illustrating how to use and how not to use PyWavelets.

The Wavelet object

Wavelet families and builtin Wavelets names

Wavelet objects are really a handy carriers of a bunch of DWT-specific data like quadrature mirror filters and some
general properties associated with them.

At first let’s go through the methods of creating a Wavelet object. The easiest and the most convenient way is to use
builtin named Wavelets.

These wavelets are organized into groups called wavelet families. The most commonly used families are:

>>> import pywt
>>> pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']

The wavelist() function with family name passed as an argument is used to obtain the list of wavelet names in
each family.

>>> for family in pywt.families():
... print "%s family:" % family, ', '.join(pywt.wavelist(family))
haar family: haar
db family: db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, db11, db12, db13, db14, db15, db16, db17, db18, db19, db20
sym family: sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, sym11, sym12, sym13, sym14, sym15, sym16, sym17, sym18, sym19, sym20
coif family: coif1, coif2, coif3, coif4, coif5
bior family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8
rbio family: rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8
dmey family: dmey

To get the full list of builtin wavelets’ names just use the wavelist() with no argument. As you can see currently
there are 76 builtin wavelets.

>>> len(pywt.wavelist())
76

Creating Wavelet objects

Now when we know all the names let’s finally create a Wavelet object:

>>> w = pywt.Wavelet('db3')

So.. that’s it.

Wavelet properties

But what can we do with Wavelet objects? Well, they carry some interesting information.

86 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

First, let’s try printing a Wavelet object. This shows a brief information about its name, its family name and some
properties like orthogonality and symmetry.

>>> print w
Wavelet db3

Family name: Daubechies
Short name: db
Filters length: 6
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric

But the most important information are the wavelet filters coefficients, which are used in Discrete Wavelet Transform.
These coefficients can be obtained via the dec_lo, Wavelet.dec_hi, rec_lo and rec_hi attributes, which
corresponds to lowpass and highpass decomposition filters and lowpass and highpass reconstruction filters respec-
tively:

>>> def print_array(arr):
... print "[%s]" % ", ".join(["%.14f" % x for x in arr])

>>> print_array(w.dec_lo)
[0.03522629188210, -0.08544127388224, -0.13501102001039, 0.45987750211933, 0.80689150931334, 0.33267055295096]
>>> print_array(w.dec_hi)
[-0.33267055295096, 0.80689150931334, -0.45987750211933, -0.13501102001039, 0.08544127388224, 0.03522629188210]
>>> print_array(w.rec_lo)
[0.33267055295096, 0.80689150931334, 0.45987750211933, -0.13501102001039, -0.08544127388224, 0.03522629188210]
>>> print_array(w.rec_hi)
[0.03522629188210, 0.08544127388224, -0.13501102001039, -0.45987750211933, 0.80689150931334, -0.33267055295096]

Another way to get the filters data is to use the filter_bank attribute, which returns all four filters in a tuple:

>>> w.filter_bank == (w.dec_lo, w.dec_hi, w.rec_lo, w.rec_hi)
True

Other Wavelet’s properties are:

Wavelet name, short_family_name and family_name:

>>> print w.name
db3
>>> print w.short_family_name
db
>>> print w.family_name
Daubechies

• Decomposition (dec_len) and reconstruction (rec_len) filter lengths:

>>> int(w.dec_len) # int() is for normalizing longs and ints for doctest
6
>>> int(w.rec_len)
6

• Orthogonality (orthogonal) and biorthogonality (biorthogonal):

>>> w.orthogonal
True
>>> w.biorthogonal
True

• Symmetry (symmetry):

10.5. PyWavelets 87

PyWavelets Documentation, Release 0.3.0

>>> print w.symmetry
asymmetric

• Number of vanishing moments for the scaling function phi (vanishing_moments_phi) and the
wavelet function psi (vanishing_moments_psi) associated with the filters:

>>> w.vanishing_moments_phi
0
>>> w.vanishing_moments_psi
3

Now when we know a bit about the builtin Wavelets, let’s see how to create custom Wavelets objects. These can be
done in two ways:

1. Passing the filter bank object that implements the filter_bank attribute. The attribute must return four filters
coefficients.

>>> class MyHaarFilterBank(object):
... @property
... def filter_bank(self):
... from math import sqrt
... return ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])

>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=MyHaarFilterBank())

2. Passing the filters coefficients directly as the filter_bank parameter.

>>> from math import sqrt
>>> my_filter_bank = ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])
>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=my_filter_bank)

Note that such custom wavelets will not have all the properties set to correct values:

>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:
Filters length: 2
Orthogonal: False
Biorthogonal: False
Symmetry: unknown

You can however set a few of them on your own:

>>> my_wavelet.orthogonal = True
>>> my_wavelet.biorthogonal = True

>>> print my_wavelet
Wavelet My Haar Wavelet
Family name:
Short name:
Filters length: 2
Orthogonal: True
Biorthogonal: True
Symmetry: unknown

88 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

And now... the wavefun!

We all know that the fun with wavelets is in wavelet functions. Now what would be this package without a tool to
compute wavelet and scaling functions approximations?

This is the purpose of the wavefun() method, which is used to approximate scaling function (phi) and wavelet
function (psi) at the given level of refinement, based on the filters coefficients.

The number of returned values varies depending on the wavelet’s orthogonality property. For orthogonal wavelets the
result is tuple with scaling function, wavelet function and xgrid coordinates.

>>> w = pywt.Wavelet('sym3')
>>> w.orthogonal
True
>>> (phi, psi, x) = w.wavefun(level=5)

For biorthogonal (non-orthogonal) wavelets different scaling and wavelet functions are used for decomposition and
reconstruction, and thus five elements are returned: decomposition scaling and wavelet functions approximations,
reconstruction scaling and wavelet functions approximations, and the xgrid.

>>> w = pywt.Wavelet('bior1.3')
>>> w.orthogonal
False
>>> (phi_d, psi_d, phi_r, psi_r, x) = w.wavefun(level=5)

See also:

You can find live examples of wavefun() usage and images of all the built-in wavelets on the Wavelet Properties
Browser page.

Signal Extension Modes

Import pywt first

>>> import pywt

>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

List of available signal extension modes:

>>> print pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

Test that dwt() and idwt() can be performed using every mode:

>>> x = [1,2,1,5,-1,8,4,6]
>>> for mode in pywt.MODES.modes:
... cA, cD = pywt.dwt(x, 'db2', mode)
... print "Mode:", mode
... print "cA:", format_array(cA)
... print "cD:", format_array(cD)
... print "Reconstruction:", pywt.idwt(cA, cD, 'db2', mode)
Mode: zpd
cA: [-0.03468 1.73309 3.40612 6.32929 6.95095]
cD: [-0.12941 -2.156 -5.95035 -1.21545 -1.8625]

10.5. PyWavelets 89

http://wavelets.pybytes.com
http://wavelets.pybytes.com

PyWavelets Documentation, Release 0.3.0

Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: cpd
cA: [1.2848 1.73309 3.40612 6.32929 7.51936]
cD: [-0.48296 -2.156 -5.95035 -1.21545 0.25882]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: sym
cA: [1.76777 1.73309 3.40612 6.32929 7.77817]
cD: [-0.61237 -2.156 -5.95035 -1.21545 1.22474]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: ppd
cA: [6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: sp1
cA: [-0.51764 1.73309 3.40612 6.32929 7.45001]
cD: [0. -2.156 -5.95035 -1.21545 0.]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: per
cA: [4.05317 3.05257 2.85381 8.42522]
cD: [0.18947 4.18258 4.33738 2.60428]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]

Invalid mode name should rise a ValueError:

>>> pywt.dwt([1,2,3,4], 'db2', 'invalid')
Traceback (most recent call last):
...
ValueError: Unknown mode name 'invalid'.

You can also refer to modes via MODES class attributes:

>>> for mode_name in ['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']:
... mode = getattr(pywt.MODES, mode_name)
... cA, cD = pywt.dwt([1,2,1,5,-1,8,4,6], 'db2', mode)
... print "Mode:", mode, "(%s)" % mode_name
... print "cA:", format_array(cA)
... print "cD:", format_array(cD)
... print "Reconstruction:", pywt.idwt(cA, cD, 'db2', mode)
Mode: 0 (zpd)
cA: [-0.03468 1.73309 3.40612 6.32929 6.95095]
cD: [-0.12941 -2.156 -5.95035 -1.21545 -1.8625]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 2 (cpd)
cA: [1.2848 1.73309 3.40612 6.32929 7.51936]
cD: [-0.48296 -2.156 -5.95035 -1.21545 0.25882]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 1 (sym)
cA: [1.76777 1.73309 3.40612 6.32929 7.77817]
cD: [-0.61237 -2.156 -5.95035 -1.21545 1.22474]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 4 (ppd)
cA: [6.91627 1.73309 3.40612 6.32929 6.91627]
cD: [-1.99191 -2.156 -5.95035 -1.21545 -1.99191]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 3 (sp1)
cA: [-0.51764 1.73309 3.40612 6.32929 7.45001]
cD: [0. -2.156 -5.95035 -1.21545 0.]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]
Mode: 5 (per)

90 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

cA: [4.05317 3.05257 2.85381 8.42522]
cD: [0.18947 4.18258 4.33738 2.60428]
Reconstruction: [1. 2. 1. 5. -1. 8. 4. 6.]

The default mode is sym:

>>> cA, cD = pywt.dwt(x, 'db2')
>>> print cA
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt(cA, cD, 'db2')
[1. 2. 1. 5. -1. 8. 4. 6.]

And using a keyword argument:

>>> cA, cD = pywt.dwt(x, 'db2', mode='sym')
>>> print cA
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print cD
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print pywt.idwt(cA, cD, 'db2')
[1. 2. 1. 5. -1. 8. 4. 6.]

DWT and IDWT

Discrete Wavelet Transform

Let’s do a Discrete Wavelet Transform of a sample data x using the db2 wavelet. It’s simple..

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, 'db2')

And the approximation and details coefficients are in cA and cD respectively:

>>> print cA
[5.65685425 7.39923721 0.22414387 3.33677403 7.77817459]
>>> print cD
[-2.44948974 -1.60368225 -4.44140056 -0.41361256 1.22474487]

Inverse Discrete Wavelet Transform

Now let’s do an opposite operation - Inverse Discrete Wavelet Transform:

>>> print pywt.idwt(cA, cD, 'db2')
[3. 7. 1. 1. -2. 5. 4. 6.]

Voilà! That’s it!

More Examples

Now let’s experiment with the dwt() some more. For example let’s pass a Wavelet object instead of the wavelet
name and specify signal extension mode (the default is sym) for the border effect handling:

10.5. PyWavelets 91

PyWavelets Documentation, Release 0.3.0

>>> w = pywt.Wavelet('sym3')
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='cpd')
>>> print cA
[4.38354585 3.80302657 7.31813271 -0.58565539 4.09727044 7.81994027]
>>> print cD
[-1.33068221 -2.78795192 -3.16825651 -0.67715519 -0.09722957 -0.07045258]

Note that the output coefficients arrays length depends not only on the input data length but also on the :class:Wavelet
type (particularly on its filters lenght that are used in the transformation).

To find out what will be the output data size use the dwt_coeff_len() function:

>>> # int() is for normalizing Python integers and long integers for documentation tests
>>> int(pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode='sym'))
6
>>> int(pywt.dwt_coeff_len(len(x), w, 'sym'))
6
>>> len(cA)
6

Looks fine. (And if you expected that the output length would be a half of the input data length, well, that’s the
trade-off that allows for the perfect reconstruction...).

The third argument of the dwt_coeff_len() is the already mentioned signal extension mode (please refer to the
PyWavelets’ documentation for the modes description). Currently there are six extension modes available:

>>> pywt.MODES.modes
['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']

>>> [int(pywt.dwt_coeff_len(len(x), w.dec_len, mode)) for mode in pywt.MODES.modes]
[6, 6, 6, 6, 6, 4]

As you see in the above example, the per (periodization) mode is slightly different from the others. It’s aim when
doing the DWT transform is to output coefficients arrays that are half of the length of the input data.

Knowing that, you should never mix the periodization mode with other modes when doing DWT and IDWT. Otherwise,
it will produce invalid results:

>>> x
[3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='per')
>>> print pywt.idwt(cA, cD, 'sym3', 'sym') # invalid mode
[1. 1. -2. 5.]
>>> print pywt.idwt(cA, cD, 'sym3', 'per')
[3. 7. 1. 1. -2. 5. 4. 6.]

Tips & tricks

Passing None instead of coefficients data to idwt() Now some tips & tricks. Passing None as one of the
coefficient arrays parameters is similar to passing a zero-filled array. The results are simply the same:

>>> print pywt.idwt([1,2,0,1], None, 'db2', 'sym')
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print pywt.idwt([1, 2, 0, 1], [0, 0, 0, 0], 'db2', 'sym')
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

92 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print pywt.idwt(None, [1, 2, 0, 1], 'db2', 'sym')
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

>>> print pywt.idwt([0, 0, 0, 0], [1, 2, 0, 1], 'db2', 'sym')
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

Remember that only one argument at a time can be None:

>>> print pywt.idwt(None, None, 'db2', 'sym')
Traceback (most recent call last):
...
ValueError: At least one coefficient parameter must be specified.

Coefficients data size in idwt When doing the IDWT transform, usually the coefficient arrays must have the same
size.

>>> print pywt.idwt([1, 2, 3, 4, 5], [1, 2, 3, 4], 'db2', 'sym')
Traceback (most recent call last):
...
ValueError: Coefficients arrays must have the same size.

But for some applications like multilevel DWT and IDWT it is sometimes convenient to allow for a small departure
from this behaviour. When the correct_size flag is set, the approximation coefficients array can be larger from the
details coefficient array by one element:

>>> print pywt.idwt([1, 2, 3, 4, 5], [1, 2, 3, 4], 'db2', 'sym', correct_size=True)
[1.76776695 0.61237244 3.18198052 0.61237244 4.59619408 0.61237244]

>>> print pywt.idwt([1, 2, 3, 4], [1, 2, 3, 4, 5], 'db2', 'sym', correct_size=True)
Traceback (most recent call last):
...
ValueError: Coefficients arrays must satisfy (0 <= len(cA) - len(cD) <= 1).

Not every coefficient array can be used in IDWT. In the following example the idwt() will fail because the input
arrays are invalid - they couldn’t be created as a result of DWT, because the minimal output length for dwt using db4
wavelet and the sym mode is 4, not 3:

>>> pywt.idwt([1,2,4], [4,1,3], 'db4', 'sym')
Traceback (most recent call last):
...
ValueError: Invalid coefficient arrays length for specified wavelet. Wavelet and mode must be the same as used for decomposition.

>>> int(pywt.dwt_coeff_len(1, pywt.Wavelet('db4').dec_len, 'sym'))
4

Multilevel DWT, IDWT and SWT

Multilevel DWT decomposition

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> db1 = pywt.Wavelet('db1')
>>> cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
>>> print cA3
[8.83883476]

10.5. PyWavelets 93

PyWavelets Documentation, Release 0.3.0

>>> print cD3
[-0.35355339]
>>> print cD2
[4. -3.5]
>>> print cD1
[-2.82842712 0. -4.94974747 -1.41421356]

>>> pywt.dwt_max_level(len(x), db1)
3

>>> cA2, cD2, cD1 = pywt.wavedec(x, db1, mode='cpd', level=2)

Multilevel IDWT reconstruction

>>> coeffs = pywt.wavedec(x, db1)
>>> print pywt.waverec(coeffs, db1)
[3. 7. 1. 1. -2. 5. 4. 6.]

Multilevel SWT decomposition

>>> x = [3, 7, 1, 3, -2, 6, 4, 6]
>>> (cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=2)
>>> print cA1
[7.07106781 5.65685425 2.82842712 0.70710678 2.82842712 7.07106781

7.07106781 6.36396103]
>>> print cD1
[-2.82842712 4.24264069 -1.41421356 3.53553391 -5.65685425 1.41421356
-1.41421356 2.12132034]

>>> print cA2
[7. 4.5 4. 5.5 7. 9.5 10. 8.5]
>>> print cD2
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> [(cA2, cD2)] = pywt.swt(cA1, db1, level=1, start_level=1)
>>> print cA2
[7. 4.5 4. 5.5 7. 9.5 10. 8.5]
>>> print cD2
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> coeffs = pywt.swt(x, db1)
>>> len(coeffs)
3
>>> pywt.swt_max_level(len(x))
3

Wavelet Packets

Import pywt

>>> import pywt

94 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

Create Wavelet Packet structure

Ok, let’s create a sample WaveletPacket:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

The input data and decomposition coefficients are stored in the WaveletPacket.data attribute:

>>> print wp.data
[1, 2, 3, 4, 5, 6, 7, 8]

Nodes are identified by paths. For the root node the path is ’’ and the decomposition level is 0.

>>> print repr(wp.path)
''
>>> print wp.level
0

The maxlevel, if not given as param in the constructor, is automatically computed:

>>> print wp['ad'].maxlevel
3

Traversing WP tree:

Accessing subnodes:
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

First check what is the maximum level of decomposition:

>>> print wp.maxlevel
3

and try accessing subnodes of the WP tree:

• 1st level:

>>> print wp['a'].data
[2.12132034 4.94974747 7.77817459 10.60660172]
>>> print wp['a'].path
a

• 2nd level:

>>> print wp['aa'].data
[5. 13.]
>>> print wp['aa'].path
aa

• 3rd level:

10.5. PyWavelets 95

PyWavelets Documentation, Release 0.3.0

>>> print wp['aaa'].data
[12.72792206]
>>> print wp['aaa'].path
aaa

Ups, we have reached the maximum level of decomposition and got an IndexError:

>>> print wp['aaaa'].data
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Now try some invalid path:

>>> print wp['ac']
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'd'], not 'c'.

which just yielded a ValueError.

Accessing Node’s attributes: WaveletPacket object is a tree data structure, which evaluates to a set of Node
objects. WaveletPacket is just a special subclass of the Node class (which in turn inherits from the BaseNode).

Tree nodes can be accessed using the obj[x] (Node.__getitem__()) operator. Each tree node has a set of at-
tributes: data, path, node_name, parent, level, maxlevel and mode.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

>>> print wp['ad'].data
[-2. -2.]

>>> print wp['ad'].path
ad

>>> print wp['ad'].node_name
d

>>> print wp['ad'].parent.path
a

>>> print wp['ad'].level
2

>>> print wp['ad'].maxlevel
3

>>> print wp['ad'].mode
sym

Collecting nodes
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

We can get all nodes on the particular level either in natural order:

96 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print [node.path for node in wp.get_level(3, 'natural')]
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']

or sorted based on the band frequency (freq):

>>> print [node.path for node in wp.get_level(3, 'freq')]
['aaa', 'aad', 'add', 'ada', 'dda', 'ddd', 'dad', 'daa']

Note that WaveletPacket.get_level() also performs automatic decomposition until it reaches the specified
level.

Reconstructing data from Wavelet Packets:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

Now create a new Wavelet Packet and set its nodes with some data.

>>> new_wp = pywt.WaveletPacket(data=None, wavelet='db1', mode='sym')

>>> new_wp['aa'] = wp['aa'].data
>>> new_wp['ad'] = [-2., -2.]

For convenience, Node.data gets automatically extracted from the Node object:

>>> new_wp['d'] = wp['d']

And reconstruct the data from the aa, ad and d packets.

>>> print new_wp.reconstruct(update=False)
[1. 2. 3. 4. 5. 6. 7. 8.]

If the update param in the reconstruct method is set to False, the node’s data will not be updated.

>>> print new_wp.data
None

Otherwise, the data attribute will be set to the reconstructed value.

>>> print new_wp.reconstruct(update=True)
[1. 2. 3. 4. 5. 6. 7. 8.]
>>> print new_wp.data
[1. 2. 3. 4. 5. 6. 7. 8.]

>>> print [n.path for n in new_wp.get_leaf_nodes(False)]
['aa', 'ad', 'd']

>>> print [n.path for n in new_wp.get_leaf_nodes(True)]
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']

Removing nodes from Wavelet Packet tree:

Let’s create a sample data:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

10.5. PyWavelets 97

PyWavelets Documentation, Release 0.3.0

First, start with a tree decomposition at level 2. Leaf nodes in the tree are:

>>> dummy = wp.get_level(2)
>>> for n in wp.get_leaf_nodes(False):
... print n.path, format_array(n.data)
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]

>>> node = wp['ad']
>>> print node
ad: [-2. -2.]

To remove a node from the WP tree, use Python’s del obj[x] (Node.__delitem__):

>>> del wp['ad']

The leaf nodes that left in the tree are:

>>> for n in wp.get_leaf_nodes():
... print n.path, format_array(n.data)
aa [5. 13.]
da [-1. -1.]
dd [0. 0.]

And the reconstruction is:

>>> print wp.reconstruct()
[2. 3. 2. 3. 6. 7. 6. 7.]

Now restore the deleted node value.

>>> wp['ad'].data = node.data

Printing leaf nodes and tree reconstruction confirms the original state of the tree:

>>> for n in wp.get_leaf_nodes(False):
... print n.path, format_array(n.data)
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]

>>> print wp.reconstruct()
[1. 2. 3. 4. 5. 6. 7. 8.]

Lazy evaluation:

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes
as presented in this example.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='sym')

1. At first the wp’s attribute a is None

98 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print wp.a
None

Remember that you should not rely on the attribute access.

2. At first attempt to access the node it is computed via decomposition of its parent node (the wp object itself).

>>> print wp['a']
a: [2.12132034 4.94974747 7.77817459 10.60660172]

3. Now the wp.a is set to the newly created node:

>>> print wp.a
a: [2.12132034 4.94974747 7.77817459 10.60660172]

And so is wp.d:

>>> print wp.d
d: [-0.70710678 -0.70710678 -0.70710678 -0.70710678]

2D Wavelet Packets

Import pywt

>>> import pywt
>>> import numpy

Create 2D Wavelet Packet structure

Start with preparing test data:

>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, 'd')
>>> print x
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

Now create a 2D Wavelet Packet object:

>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='sym')

The input data and decomposition coefficients are stored in the WaveletPacket2D.data attribute:

>>> print wp.data
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

10.5. PyWavelets 99

PyWavelets Documentation, Release 0.3.0

Nodes are identified by paths. For the root node the path is ’’ and the decomposition level is 0.

>>> print repr(wp.path)
''
>>> print wp.level
0

The WaveletPacket2D.maxlevel, if not given in the constructor, is automatically computed based on the data
size:

>>> print wp.maxlevel
3

Traversing WP tree:

Wavelet Packet nodes are arranged in a tree. Each node in a WP tree is uniquely identified and addressed by a path
string.

In the 1D WaveletPacket case nodes were accessed using ’a’ (approximation) and ’d’ (details) path names
(each node has two 1D children).

Because now we deal with a bit more complex structure (each node has four children), we have four basic path names
based on the dwt 2D output convention to address the WP2D structure:

• a - LL, low-low coefficients

• h - LH, low-high coefficients

• v - HL, high-low coefficients

• d - HH, high-high coefficients

In other words, subnode naming corresponds to the dwt2() function output naming convention (as wavelet packet
transform is based on the dwt2 transform):

cA(LL)	cH(LH)

(cA, (cH, cV, cD)) <---> -------------------
cV(HL)	cD(HH)

(fig.1: DWT 2D output and interpretation)

Knowing what the nodes names are, we can now access them using the indexing operator obj[x]
(WaveletPacket2D.__getitem__()):

>>> print wp['a'].data
[[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

>>> print wp['h'].data
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

100 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

>>> print wp['v'].data
[[-1. -1. -1. -1.]
[-1. -1. -1. -1.]
[-1. -1. -1. -1.]
[-1. -1. -1. -1.]]

>>> print wp['d'].data
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

Similarly, a subnode of a subnode can be accessed by:

>>> print wp['aa'].data
[[10. 26.]
[10. 26.]]

Indexing base WaveletPacket2D (as well as 1D WaveletPacket) using compound path is just the same as
indexing WP subnode:

>>> node = wp['a']
>>> print node['a'].data
[[10. 26.]
[10. 26.]]

>>> print wp['a']['a'].data is wp['aa'].data
True

Following down the decomposition path:

>>> print wp['aaa'].data
[[36.]]
>>> print wp['aaaa'].data
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Ups, we have reached the maximum level of decomposition for the ’aaaa’ path, which btw. was:

>>> print wp.maxlevel
3

Now try some invalid path:

>>> print wp['f']
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'h', 'v', 'd'], not 'f'.

Accessing Node2D’s attributes: WaveletPacket2D is a tree data structure, which evaluates to a set of Node2D
objects. WaveletPacket2D is just a special subclass of the Node2D class (which in turn inherits from a
BaseNode, just like with Node and WaveletPacket for the 1D case.).

>>> print wp['av'].data
[[-4. -4.]
[-4. -4.]]

>>> print wp['av'].path
av

10.5. PyWavelets 101

PyWavelets Documentation, Release 0.3.0

>>> print wp['av'].node_name
v

>>> print wp['av'].parent.path
a

>>> print wp['av'].parent.data
[[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

>>> print wp['av'].level
2

>>> print wp['av'].maxlevel
3

>>> print wp['av'].mode
sym

Collecting nodes We can get all nodes on the particular level using the WaveletPacket2D.get_level()
method:

• 0 level - the root wp node:

>>> len(wp.get_level(0))
1
>>> print [node.path for node in wp.get_level(0)]
['']

• 1st level of decomposition:

>>> len(wp.get_level(1))
4
>>> print [node.path for node in wp.get_level(1)]
['a', 'h', 'v', 'd']

• 2nd level of decomposition:

>>> len(wp.get_level(2))
16
>>> paths = [node.path for node in wp.get_level(2)]
>>> for i, path in enumerate(paths):
... print path,
... if (i+1) % 4 == 0: print
aa ah av ad
ha hh hv hd
va vh vv vd
da dh dv dd

• 3rd level of decomposition:

>>> print len(wp.get_level(3))
64
>>> paths = [node.path for node in wp.get_level(3)]
>>> for i, path in enumerate(paths):
... print path,
... if (i+1) % 8 == 0: print

102 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd

Note that WaveletPacket2D.get_level() performs automatic decomposition until it reaches the given level.

Reconstructing data from Wavelet Packets:

Let’s create a new empty 2D Wavelet Packet structure and set its nodes values with known data from the previous
examples:

>>> new_wp = pywt.WaveletPacket2D(data=None, wavelet='db1', mode='sym')

>>> new_wp['vh'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vv'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vd'] = [[0.0, 0.0], [0.0, 0.0]]

>>> new_wp['a'] = [[3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
... [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0]]
>>> new_wp['d'] = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
... [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]

For convenience, Node2D.data gets automatically extracted from the base Node2D object:

>>> new_wp['h'] = wp['h'] # all zeros

Note: just remember to not assign to the node.data parameter directly (todo).

And reconstruct the data from the a, d, vh, vv, vd and h packets (Note that va node was not set and the WP tree is
“not complete” - the va branch will be treated as zero-array):

>>> print new_wp.reconstruct(update=False)
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Now set the va node with the known values and do the reconstruction again:

>>> new_wp['va'] = wp['va'].data # [[-2.0, -2.0], [-2.0, -2.0]]
>>> print new_wp.reconstruct(update=False)
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

10.5. PyWavelets 103

PyWavelets Documentation, Release 0.3.0

which is just the same as the base sample data x.

Of course we can go the other way and remove nodes from the tree. If we delete the va node, again, we get the “not
complete” tree from one of the previous examples:

>>> del new_wp['va']
>>> print new_wp.reconstruct(update=False)
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Just restore the node before next examples.

>>> new_wp['va'] = wp['va'].data

If the update param in the WaveletPacket2D.reconstruct() method is set to False, the node’s
Node2D.data attribute will not be updated.

>>> print new_wp.data
None

Otherwise, the WaveletPacket2D.data attribute will be set to the reconstructed value.

>>> print new_wp.reconstruct(update=True)
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

>>> print new_wp.data
[[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]
[1. 2. 3. 4. 5. 6. 7. 8.]]

Since we have an interesting WP structure built, it is a good occasion to present the
WaveletPacket2D.get_leaf_nodes() method, which collects non-zero leaf nodes from the WP tree:

>>> print [n.path for n in new_wp.get_leaf_nodes()]
['a', 'h', 'va', 'vh', 'vv', 'vd', 'd']

Passing the decompose=True parameter to the method will force the WP object to do a full decomposition up to the
maximum level of decomposition:

>>> paths = [n.path for n in new_wp.get_leaf_nodes(decompose=True)]
>>> len(paths)
64
>>> for i, path in enumerate(paths):

104 Chapter 10. Contents

PyWavelets Documentation, Release 0.3.0

... print path,

... if (i+1) % 8 == 0: print
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd

Lazy evaluation:

Note: This section is for demonstration of pywt internals purposes only. Do not rely on the attribute access to nodes
as presented in this example.

>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8)
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='sym')

1. At first the wp’s attribute a is None

>>> print wp.a
None

Remember that you should not rely on the attribute access.

2. During the first attempt to access the node it is computed via decomposition of its parent node (the wp object
itself).

>>> print wp['a']
a: [[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

3. Now the a is set to the newly created node:

>>> print wp.a
a: [[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]
[3. 7. 11. 15.]]

And so is wp.d:

>>> print wp.d
d: [[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

Gotchas

PyWavelets utilizes NumPy under the hood. That’s why handling the data containing None values can be surprising.
None values are converted to ‘not a number’ (numpy.NaN) values:

10.5. PyWavelets 105

PyWavelets Documentation, Release 0.3.0

>>> import numpy, pywt
>>> x = [None, None]
>>> mode = 'sym'
>>> wavelet = 'db1'
>>> cA, cD = pywt.dwt(x, wavelet, mode)
>>> numpy.all(numpy.isnan(cA))
True
>>> numpy.all(numpy.isnan(cD))
True
>>> rec = pywt.idwt(cA, cD, wavelet, mode)
>>> numpy.all(numpy.isnan(rec))
True

10.5.3 Development notes

This section contains information on building and installing PyWavelets from source code as well as instructions for
preparing the build environment on Windows and Linux.

Preparing Windows build environment

To start developing PyWavelets code on Windows you will have to install a C compiler and prepare the build environ-
ment.

Installing Windows SDK C/C++ compiler

Microsoft Visual C++ 2008 (Microsoft Visual Studio 9.0) is the compiler that is suitable for building extensions for
Python 2.6, 2.7, 3.0, 3.1 and 3.2 (both 32 and 64 bit).

Note: For reference:

• the MSC v.1500 in the Python version string is Microsoft Visual C++ 2008 (Microsoft Visual Studio 9.0 with
msvcr90.dll runtime)

• MSC v.1600 is MSVC 2010 (10.0 with msvcr100.dll runtime)

• MSC v.1700 is MSVC 2011 (11.0)

Python 2.7.3 (default, Apr 10 2012, 23:31:26) [MSC v.1500 32 bit (Intel)] on win32
Python 3.2 (r32:88445, Feb 20 2011, 21:30:00) [MSC v.1500 64 bit (AMD64)] on win32

To get started first download, extract and install Microsoft Windows SDK for Windows 7 and .NET Frame-
work 3.5 SP1 from http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-
BEA146E4FAE1&displaylang=en.

There are several ISO images on the site, so just grab the one that is suitable for your platform:

• GRMSDK_EN_DVD.iso for 32-bit x86 platform

• GRMSDKX_EN_DVD.iso for 64-bit AMD64 platform (AMD64 is the codename for 64-bit CPU architecture,
not the processor manufacturer)

After installing the SDK and before compiling the extension you have to configure some environment variables.

For 32-bit build execute the util/setenv_build32.bat script in the cmd window:

106 Chapter 10. Contents

http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-BEA146E4FAE1&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-BEA146E4FAE1&displaylang=en

PyWavelets Documentation, Release 0.3.0

rem Configure the environment for 32-bit builds.
rem Use "vcvars32.bat" for a 32-bit build.
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat"
rem Convince setup.py to use the SDK tools.
set MSSdk=1
setenv /x86 /release
set DISTUTILS_USE_SDK=1

For 64-bit use util/setenv_build64.bat:

rem Configure the environment for 64-bit builds.
rem Use "vcvars32.bat" for a 32-bit build.
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars64.bat"
rem Convince setup.py to use the SDK tools.
set MSSdk=1
setenv /x64 /release
set DISTUTILS_USE_SDK=1

See also http://wiki.cython.org/64BitCythonExtensionsOnWindows.

MinGW C/C++ compiler

MinGW distribution can be downloaded from http://sourceforge.net/projects/mingwbuilds/.

In order to change the settings and use MinGW as the default compiler, edit or create a Distutils configuration file
c:\Python2*\Lib\distutils\distutils.cfg and place the following entry in it:

[build]
compiler = mingw32

You can also take a look at Cython’s “Installing MinGW on Windows” page at
http://wiki.cython.org/InstallingOnWindows for more info.

Note: Python 2.7/3.2 distutils package is incompatible with the current version (4.7+) of MinGW (MinGW dropped
the -mno-cygwin flag, which is still passed by distutils).

To use MinGW to compile Python extensions you have to patch the distutils/cygwinccompiler.py library
module and remove every occurrence of -mno-cygwin.

See http://bugs.python.org/issue12641 bug report for more information on the issue.

Next steps

After completing these steps continue with Installing build dependencies.

Preparing Linux build environment

There is a good chance that you already have a working build environment. Just skip steps that you don’t need to
execute.

Installing basic build tools

Note that the example below uses aptitude package manager, which is specific to Debian and Ubuntu Linux
distributions. Use your favourite package manager to install these packages on your OS.

10.5. PyWavelets 107

http://wiki.cython.org/64BitCythonExtensionsOnWindows
http://sourceforge.net/projects/mingwbuilds/
http://wiki.cython.org/InstallingOnWindows
http://bugs.python.org/issue12641

PyWavelets Documentation, Release 0.3.0

aptitude install build-essential gcc python-dev git-core

Next steps

After completing these steps continue with Installing build dependencies.

Installing build dependencies

Setting up Python virtual environment

A good practice is to create a separate Python virtual environment for each project. If you don’t have virtualenv yet,
install and activate it using:

curl -O https://raw.github.com/pypa/virtualenv/master/virtualenv.py
python virtualenv.py <name_of_the_venv>
. <name_of_the_venv>/bin/activate

Installing Cython

Use pip (http://pypi.python.org/pypi/pip) to install Cython:

pip install Cython>=0.16

Installing numpy

Use pip to install numpy:

pip install numpy

It takes some time to compile numpy, so it might be more convenient to install it from a binary release.

Note: Installing numpy in a virtual environment on Windows is not straightforward.

It is recommended to download a suitable binary .exe release from http://www.scipy.org/Download/ and install it
using easy_install (i.e. easy_install numpy-1.6.2-win32-superpack-python2.7.exe).

Note: You can find binaries for 64-bit Windows on http://www.lfd.uci.edu/~gohlke/pythonlibs/.

Installing Sphinx

Sphinx is a documentation tool that converts reStructuredText files into nicely looking html documentation. Install it
with:

pip install Sphinx

108 Chapter 10. Contents

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/pip
http://cython.org/
http://numpy.scipy.org/
http://www.scipy.org/Download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://sphinx.pocoo.org

PyWavelets Documentation, Release 0.3.0

Building and installing PyWavelets

Installing from source code

Go to https://github.com/nigma/pywt GitHub project page, fork and clone the repository or use the upstream repository
to get the source code:

git clone https://github.com/nigma/pywt.git PyWavelets

Activate your Python virtual environment, go to the cloned source directory and type the following commands to build
and install the package:

python setup.py build
python setup.py install

To verify the installation run the following command:

python setup.py test

To build docs:

cd doc
make html

Installing a development version

You can also install directly from the source repository:

pip install -e git+https://github.com/nigma/pywt.git#egg=PyWavelets

or:

pip install PyWavelets==dev

Installing a regular release from PyPi

A regular release can be installed with pip or easy_install:

pip install PyWavelets

Testing

Continous integration with Travis-CI

The project is using Travis-CI service for continous integration and testing.

Current build status is: If you are submitting a patch or pull request please make sure it does not break the build.

Running tests locally

Tests are implemented with nose, so use one of:

$ nosetests pywt

10.5. PyWavelets 109

https://github.com/nigma/pywt
https://travis-ci.org/PyWavelets/pywt
http://nose.readthedocs.org/en/latest/

PyWavelets Documentation, Release 0.3.0

>>> pywt.test()

Running tests with Tox

There’s also a config file for running tests with Tox (pip install tox). To for example run tests for Python 2.7
and Python 3.4 use:

tox -e py27,py34

For more information see the Tox documentation.

Something not working?

If these instructions are not clear or you need help setting up your development environment, go ahead and ask on the
PyWavelets discussion group at http://groups.google.com/group/pywavelets or open a ticket on GitHub.

10.5.4 Resources

Code

The GitHub repository is now the main code repository.

If you are using the Mercurial repository at Bitbucket, please switch to Git/GitHub and follow for development updates.

Questions and bug reports

Use GitHub Issues or PyWavelets discussions group to post questions and open tickets.

Wavelet Properties Browser

Browse properties and graphs of wavelets included in PyWavelets on wavelets.pybytes.com.

Articles

• Denoising: wavelet thresholding

• Wavelet Regression in Python

10.5.5 Release Notes

PyWavelets 0.3.0 Release Notes

110 Chapter 10. Contents

http://tox.testrun.org/
http://tox.testrun.org/
http://groups.google.com/group/pywavelets
https://github.com/nigma/pywt
https://github.com/PyWavelets/pywt
https://github.com/PyWavelets/pywt/issues
http://groups.google.com/group/pywavelets
http://wavelets.pybytes.com/
http://blancosilva.wordpress.com/teaching/mathematical-imaging/denoising-wavelet-thresholding/
http://jseabold.net/blog/2012/02/wavelet-regression-in-python.html

PyWavelets Documentation, Release 0.3.0

Contents

• PyWavelets 0.3.0 Release Notes
– New features

* Test suite
* n-D Inverse Discrete Wavelet Transform
* Thresholding

– Backwards incompatible changes
– Other changes
– Authors

* Issues closed for v0.3.0
* Pull requests for v0.3.0

PyWavelets 0.3.0 is the first release of the package in 3 years. It is the result of a significant effort of a growing
development team to modernize the package, to provide Python 3.x support and to make a start with providing new
features as well as improved performance. A 0.4.0 release will follow shortly, and will contain more significant new
features as well as changes/deprecations to streamline the API.

This release requires Python 2.6, 2.7 or 3.3-3.5 and NumPy 1.6.2 or greater.

Highlights of this release include:

• Support for Python 3.x (>=3.3)

• Added a test suite (based on nose, coverage up to 61% so far)

• Maintenance work: C style complying to the Numpy style guide, improved templating system, more complete
docstrings, pep8/pyflakes compliance, and more.

New features

Test suite The test suite can be run with nosetests pywt or with:

>>> import pywt
>>> pywt.test()

n-D Inverse Discrete Wavelet Transform The function pywt.idwtn, which provides n-dimensional inverse
DWT, has been added. It complements idwt, idwt2 and dwtn.

Thresholding The function pywt.threshold has been added. It unifies the four thresholding functions that are still
provided in the pywt.thresholding namespace.

Backwards incompatible changes

None in this release.

Other changes

Development has moved to a new repo. Everyone with an interest in wavelets is welcome to contribute!

Building wheels, building with python setup.py develop and many other standard ways to build and install
PyWavelets are supported now.

10.5. PyWavelets 111

https://github.com/PyWavelets/pywt

PyWavelets Documentation, Release 0.3.0

Authors

• Ankit Agrawal +

• François Boulogne +

• Ralf Gommers +

• David Menéndez Hurtado +

• Gregory R. Lee +

• David McInnis +

• Helder Oliveira +

• Filip Wasilewski

• Kai Wohlfahrt +

A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v0.3.0

• #3: Remove numerix compat layer

• #4: Add single code base Python 3 support

• #5: PEP8 issues

• #6: Migrate tests to nose

• #7: Expand test coverage without Matlab to a reasonable level

• #8: Replace custom C templates by Numpy’s templating system

• #9: Replace Cython templates by fused types

• #10: Replace use of __array_interface__ with Cython’s memoryviews

• #11: Format existing docstrings in numpydoc format.

• #12: Complete docstrings, they’re quite sparse right now

• #13: Reorganize source tree

• #24: doc/source/regression should be moved

• #27: Broken test: test_swt_decomposition

• #28: Install issue, no module tools.six

• #29: wp.update fails after removal of nodes

• #32: wp.update fails on 2D

• #34: Wavelet string attributes shouldn’t be bytes in Python 3

• #35: Re-enable float32 support

• #36: wavelet instance vs string

• #40: Test with Numpy 1.8rc1

• #45: demos should be updated and integrated in docs

• #60: Moving pywt forward faster

112 Chapter 10. Contents

https://github.com/PyWavelets/pywt/issues/3
https://github.com/PyWavelets/pywt/issues/4
https://github.com/PyWavelets/pywt/issues/5
https://github.com/PyWavelets/pywt/issues/6
https://github.com/PyWavelets/pywt/issues/7
https://github.com/PyWavelets/pywt/issues/8
https://github.com/PyWavelets/pywt/issues/9
https://github.com/PyWavelets/pywt/issues/10
https://github.com/PyWavelets/pywt/issues/11
https://github.com/PyWavelets/pywt/issues/12
https://github.com/PyWavelets/pywt/issues/13
https://github.com/PyWavelets/pywt/issues/24
https://github.com/PyWavelets/pywt/issues/27
https://github.com/PyWavelets/pywt/issues/28
https://github.com/PyWavelets/pywt/issues/29
https://github.com/PyWavelets/pywt/issues/32
https://github.com/PyWavelets/pywt/issues/34
https://github.com/PyWavelets/pywt/issues/35
https://github.com/PyWavelets/pywt/issues/36
https://github.com/PyWavelets/pywt/issues/40
https://github.com/PyWavelets/pywt/issues/45
https://github.com/PyWavelets/pywt/issues/60

PyWavelets Documentation, Release 0.3.0

• #61: issues to address in moving towards 0.3.0

• #71: BUG: _pywt.downcoef always returns level=1 result

Pull requests for v0.3.0

• #1: travis: check all branches + fix URL

• #17: [DOC] doctrings for multilevel functions

• #18: DOC: format -> functions.py

• #20: MAINT: remove unnecessary zero() copy()

• #21: Doc wavelet_packets

• #22: Minor doc fixes

• #25: TEST: remove useless functions and use numpy instead

• #26: Merge most recent work

• #30: Adding test for wp.rst

• #41: Change to Numpy templating system

• #43: MAINT: update six.py to not use lazy loading.

• #49: Taking on API Issues

• #50: Add idwtn

• #53: readme updated with info related to Py3 version

• #63: Remove six

• #65: Thresholding

• #70: MAINT: PEP8 fixes

• #72: BUG: fix _downcoef for level > 1

• #73: MAINT: documentation and metadata update for repo fork

• #74: STY: fix pep8/pyflakes issues

• #77: MAINT: raise ValueError if data given to dwt or idwt is not 1D...

10.6 Indices and tables

• genindex

• search

10.6. Indices and tables 113

https://github.com/PyWavelets/pywt/issues/61
https://github.com/PyWavelets/pywt/issues/71
https://github.com/PyWavelets/pywt/pull/1
https://github.com/PyWavelets/pywt/pull/17
https://github.com/PyWavelets/pywt/pull/18
https://github.com/PyWavelets/pywt/pull/20
https://github.com/PyWavelets/pywt/pull/21
https://github.com/PyWavelets/pywt/pull/22
https://github.com/PyWavelets/pywt/pull/25
https://github.com/PyWavelets/pywt/pull/26
https://github.com/PyWavelets/pywt/pull/30
https://github.com/PyWavelets/pywt/pull/41
https://github.com/PyWavelets/pywt/pull/43
https://github.com/PyWavelets/pywt/pull/49
https://github.com/PyWavelets/pywt/pull/50
https://github.com/PyWavelets/pywt/pull/53
https://github.com/PyWavelets/pywt/pull/63
https://github.com/PyWavelets/pywt/pull/65
https://github.com/PyWavelets/pywt/pull/70
https://github.com/PyWavelets/pywt/pull/72
https://github.com/PyWavelets/pywt/pull/73
https://github.com/PyWavelets/pywt/pull/74
https://github.com/PyWavelets/pywt/pull/77

PyWavelets Documentation, Release 0.3.0

114 Chapter 10. Contents

Index

Symbols
__delitem__() (pywt.BaseNode method), 36, 81
__getitem__() (pywt.BaseNode method), 35, 80
__init__() (pywt.BaseNode method), 34, 79
__init__() (pywt.WaveletPacket method), 37, 82
__init__() (pywt.WaveletPacket2D method), 38, 83
__setitem__() (pywt.BaseNode method), 36, 80

B
BaseNode (class in pywt), 34, 79
biorthogonal (pywt.Wavelet attribute), 23, 68

C
centfrq() (in module pywt), 41, 85

D
data (pywt.BaseNode attribute), 35, 79
dec_hi (pywt.Wavelet attribute), 22, 67
dec_len (pywt.Wavelet attribute), 22, 67
dec_lo (pywt.Wavelet attribute), 22, 67
decompose() (pywt.BaseNode method), 35, 80
decompose() (pywt.Node method), 37, 82
decompose() (pywt.Node2D method), 38, 83
downcoef() (in module pywt), 27, 72
dwt() (in module pywt), 26, 70
dwt2() (in module pywt), 30, 75
dwt_coeff_len() (in module pywt), 28, 73
dwt_max_level() (in module pywt), 27, 72
dwtn() (in module pywt), 40, 84

F
families() (in module pywt), 21, 66
family_name (pywt.Wavelet attribute), 23, 67
filter_bank (pywt.Wavelet attribute), 22, 67

G
get_leaf_nodes() (pywt.BaseNode method), 36, 81
get_level() (pywt.WaveletPacket method), 37, 82
get_level() (pywt.WaveletPacket2D method), 38, 83
get_subnode() (pywt.BaseNode method), 35, 80

greater() (built-in function), 39, 84

H
hard() (built-in function), 38, 83
has_any_subnode (pywt.BaseNode attribute), 35, 80

I
idwt() (in module pywt), 28, 73
idwt2() (in module pywt), 31, 76
intwave() (in module pywt), 40, 85
inverse_filter_bank (pywt.Wavelet attribute), 22, 67
is_empty (pywt.BaseNode attribute), 35, 80

L
less() (built-in function), 39, 84
level (pywt.BaseNode attribute), 35, 80

M
maxlevel (pywt.BaseNode attribute), 35, 80
mode (pywt.BaseNode attribute), 35, 80

N
name (pywt.Wavelet attribute), 22, 67
Node (class in pywt), 34, 37, 79, 81
Node2D (class in pywt), 34, 37, 79, 82
node_name (pywt.BaseNode attribute), 35, 80
node_name (pywt.Node attribute), 37, 81
node_name (pywt.Node2D attribute), 37, 82

O
orthogonal (pywt.Wavelet attribute), 23, 68

P
parent (pywt.BaseNode attribute), 35, 80
path (pywt.BaseNode attribute), 35, 80

R
rec_hi (pywt.Wavelet attribute), 22, 67
rec_len (pywt.Wavelet attribute), 22, 67

115

PyWavelets Documentation, Release 0.3.0

rec_lo (pywt.Wavelet attribute), 22, 67
reconstruct() (pywt.BaseNode method), 35, 80

S
short_family_name (pywt.Wavelet attribute), 23, 67
short_name (pywt.Wavelet attribute), 22, 67
soft() (built-in function), 39, 84
swt() (in module pywt), 33, 77
swt2() (in module pywt), 33, 78
swt_max_level() (in module pywt), 34, 79
symmetry (pywt.Wavelet attribute), 23, 68

U
upcoef() (in module pywt), 29, 74

V
vanishing_moments_phi (pywt.Wavelet attribute), 23, 68
vanishing_moments_psi (pywt.Wavelet attribute), 23, 68

W
walk() (pywt.BaseNode method), 36, 81
walk_depth() (pywt.BaseNode method), 36, 81
wavedec() (in module pywt), 26, 71
wavedec2() (in module pywt), 31, 76
wavefun() (pywt.Wavelet method), 23, 68
Wavelet (class in pywt), 22, 67
wavelet (pywt.BaseNode attribute), 35, 80
WaveletPacket (class in pywt), 34, 37, 79, 81, 82
WaveletPacket2D (class in pywt), 34, 37, 38, 79, 82, 83
wavelist() (in module pywt), 21, 66
waverec() (in module pywt), 29, 74
waverec2() (in module pywt), 32, 77

116 Index

	Main features
	Requirements
	Download
	Install
	Documentation
	State of development & Contributing
	Python 3
	Contact
	License
	Contents
	API Reference
	Usage examples
	Development notes
	Resources
	PyWavelets
	Indices and tables

