

PyWavelets - Wavelet Transforms in Python

PyWavelets is open source wavelet transform software for Python [http://python.org/]. It combines
a simple high level interface with low level C and Cython performance.

PyWavelets is very easy to use and get started with. Just install the package,
open the Python interactive shell and type:

>>> import pywt
>>> cA, cD = pywt.dwt([1, 2, 3, 4], 'db1')

Voilà! Computing wavelet transforms has never been so simple :)

Here is a slightly more involved example of applying a digital wavelet
transform to an image:

import numpy as np
import matplotlib.pyplot as plt

import pywt
import pywt.data

Load image
original = pywt.data.camera()

Wavelet transform of image, and plot approximation and details
titles = ['Approximation', ' Horizontal detail',
 'Vertical detail', 'Diagonal detail']
coeffs2 = pywt.dwt2(original, 'bior1.3')
LL, (LH, HL, HH) = coeffs2
fig = plt.figure(figsize=(12, 3))
for i, a in enumerate([LL, LH, HL, HH]):
 ax = fig.add_subplot(1, 4, i + 1)
 ax.imshow(a, interpolation="nearest", cmap=plt.cm.gray)
 ax.set_title(titles[i], fontsize=10)
 ax.set_xticks([])
 ax.set_yticks([])

fig.tight_layout()
plt.show()

[image: _images/camera_approx_detail.png]

Main features

The main features of PyWavelets are:

	1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

	1D, 2D and nD Multilevel DWT and IDWT

	1D, 2D and nD Stationary Wavelet Transform (Undecimated Wavelet Transform)

	1D and 2D Wavelet Packet decomposition and reconstruction

	1D Continuous Wavelet Transform

	Computing Approximations of wavelet and scaling functions

	Over 100 built-in wavelet filters [http://wavelets.pybytes.com/] and support for custom wavelets

	Single and double precision calculations

	Real and complex calculations

	Results compatible with Matlab Wavelet Toolbox (TM)

Getting help

Use GitHub Issues [https://github.com/PyWavelets/pywt/issues], StackOverflow [https://stackoverflow.com], or the PyWavelets discussions group [http://groups.google.com/group/pywavelets]
to post your comments or questions.

License

PyWavelets is a free Open Source software released under the MIT license.

Citing

If you use PyWavelets in a scientific publication, we would appreciate
citations of the project via the following
JOSS publication:

Gregory R. Lee, Ralf Gommers, Filip Wasilewski, Kai Wohlfahrt, Aaron
O’Leary (2019). PyWavelets: A Python package for wavelet analysis. Journal
of Open Source Software, 4(36), 1237, https://doi.org/10.21105/joss.01237.

[image: _images/status.svg]
 [https://doi.org/10.21105/joss.01237]Specific releases can also be cited via Zenodo. The DOI below will correspond
to the most recent release. DOIs for past versions can be found by following
the link in the badge below to Zenodo:

[image: _images/zenodo.1407171.svg]
 [https://doi.org/10.5281/zenodo.1407171]

Contents

	Installing

	API Reference

	Usage examples

	Contributing

	Development guide

	Release Notes

Installing

The latest release, including binary packages for Windows, macOS and Linux,
is available for download from PyPI [http://pypi.python.org/pypi/PyWavelets/]. You can also find source releases at
the Releases Page [https://github.com/PyWavelets/pywt/releases].

You can install PyWavelets with:

pip install PyWavelets

Users of the Anaconda [https://www.continuum.io] Python distribution may wish to obtain pre-built
Windows, Intel Linux or macOS / OSX binaries from the main or conda-forge
channel:

conda install pywavelets

Several Linux distributions have their own packages for PyWavelets, but these
tend to be moderately out of date. Query your Linux package manager tool for
python-pywavelets, python-wavelets, python-pywt or a similar
package name.

Building from source

The most recent development version can be found on GitHub at
https://github.com/PyWavelets/pywt.

The latest release, is available for download from PyPI [http://pypi.python.org/pypi/PyWavelets/] or on the
Releases Page [https://github.com/PyWavelets/pywt/releases].

If you want or need to install from source, you will need a working C compiler
(any common one will work) and a recent version of Cython [http://cython.org/]. Navigate to the
PyWavelets source code directory (containing setup.py) and type:

pip install .

The requirements needed to build from source are:

	Python [http://python.org/] 2.7 or >=3.4

	NumPy [https://www.numpy.org] >= 1.13.3

	Cython [http://cython.org/] >= 0.23.5 (if installing from git, not from a PyPI source release)

To run all the tests for PyWavelets, you will also need to install the
Matplotlib [http://matplotlib.org] package. If SciPy [https://www.scipy.org] is available, FFT-based continuous wavelet
transforms will use the FFT implementation from SciPy instead of NumPy.

See also

Development guide section contains more
information on building and installing from source code.

API Reference

	Wavelets
	Wavelet families()

	Built-in wavelets - wavelist()

	Wavelet object

	Using custom wavelets

	ContinuousWavelet object

	Signal extension modes
	Naming Conventions

	Padding using PyWavelets Signal Extension Modes - pad

	Discrete Wavelet Transform (DWT)
	Single level dwt

	Multilevel decomposition using wavedec

	Partial Discrete Wavelet Transform data decomposition downcoef

	Maximum decomposition level - dwt_max_level, dwtn_max_level

	Result coefficients length - dwt_coeff_len

	Inverse Discrete Wavelet Transform (IDWT)
	Single level idwt

	Multilevel reconstruction using waverec

	Direct reconstruction with upcoef

	Overview of multilevel wavelet decompositions
	Multilevel Discrete Wavelet Transform

	Fully Seperable Discrete Wavelet Transform

	Wavelet Packet Transform

	2D Forward and Inverse Discrete Wavelet Transform
	Single level dwt2

	Single level idwt2

	2D multilevel decomposition using wavedec2

	2D multilevel reconstruction using waverec2

	2D coordinate conventions

	nD Forward and Inverse Discrete Wavelet Transform
	Single level - dwtn

	Single level - idwtn

	Multilevel decomposition - wavedecn

	Multilevel reconstruction - waverecn

	Multilevel fully separable decomposition - fswavedecn

	Multilevel fully separable reconstruction - fswaverecn

	Multilevel fully separable reconstruction coeffs - FswavedecnResult

	Handling DWT Coefficients
	Concatenating all coefficients into a single n-d array

	Splitting concatenated coefficient array back into its components

	Raveling and unraveling coefficients to/from a 1D array

	Multilevel: Total size of all coefficients - wavedecn_size

	Multilevel: n-d coefficient shapes - wavedecn_shapes

	Stationary Wavelet Transform
	Multilevel 1D swt

	Multilevel 2D swt2

	Multilevel n-dimensional swtn

	Maximum decomposition level - swt_max_level

	Inverse Stationary Wavelet Transform
	Multilevel 1D iswt

	Multilevel 2D iswt2

	Multilevel n-dimensional iswtn

	Multiresolution Analysis
	Multilevel 1D mra

	Multilevel 2D mra2

	Multilevel n-dimensional mran

	Inverse Multilevel 1D imra

	Inverse Multilevel 2D imra2

	Inverse Multilevel n-dimensional imran

	Wavelet Packets
	BaseNode - a common interface of WaveletPacket, WaveletPacket2D and WaveletPacketND

	WaveletPacket and Node

	WaveletPacket2D and Node2D

	WaveletPacketND and NodeND

	Continuous Wavelet Transform (CWT)
	Single level - cwt

	Continuous Wavelet Families

	Choosing the scales for cwt

	Thresholding functions
	Thresholding

	Other functions
	Integrating wavelet functions

	Central frequency of psi wavelet function

	Quadrature Mirror Filter

	Orthogonal Filter Banks

	Example Datasets

Wavelets

Wavelet families()

	
pywt.families(short=True)

	Returns a list of available built-in wavelet families.

Currently the built-in families are:

	Haar (haar)

	Daubechies (db)

	Symlets (sym)

	Coiflets (coif)

	Biorthogonal (bior)

	Reverse biorthogonal (rbio)

	“Discrete” FIR approximation of Meyer wavelet (dmey)

	Gaussian wavelets (gaus)

	Mexican hat wavelet (mexh)

	Morlet wavelet (morl)

	Complex Gaussian wavelets (cgau)

	Shannon wavelets (shan)

	Frequency B-Spline wavelets (fbsp)

	Complex Morlet wavelets (cmor)

	Parameters

	
	shortbool, optional

	Use short names (default: True).

	Returns

	
	familieslist

	List of available wavelet families.

Examples

>>> import pywt
>>> pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus', 'mexh', 'morl', 'cgau', 'shan', 'fbsp', 'cmor']
>>> pywt.families(short=False)
['Haar', 'Daubechies', 'Symlets', 'Coiflets', 'Biorthogonal', 'Reverse biorthogonal', 'Discrete Meyer (FIR Approximation)', 'Gaussian', 'Mexican hat wavelet', 'Morlet wavelet', 'Complex Gaussian wavelets', 'Shannon wavelets', 'Frequency B-Spline wavelets', 'Complex Morlet wavelets']

Built-in wavelets - wavelist()

	
pywt.wavelist(family=None, kind='all')

	Returns list of available wavelet names for the given family name.

	Parameters

	
	familystr, optional

	Short family name. If the family name is None (default) then names
of all the built-in wavelets are returned. Otherwise the function
returns names of wavelets that belong to the given family.
Valid names are:

'haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus',
'mexh', 'morl', 'cgau', 'shan', 'fbsp', 'cmor'

	kind{‘all’, ‘continuous’, ‘discrete’}, optional

	Whether to return only wavelet names of discrete or continuous
wavelets, or all wavelets. Default is 'all'.
Ignored if family is specified.

	Returns

	
	wavelistlist of str

	List of available wavelet names.

Examples

>>> import pywt
>>> pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'coif6', 'coif7', ...
>>> pywt.wavelist(kind='continuous')
['cgau1', 'cgau2', 'cgau3', 'cgau4', 'cgau5', 'cgau6', 'cgau7', ...

Custom discrete wavelets are also supported through the
Wavelet object constructor as described below.

Wavelet object

	
class pywt.Wavelet(name[, filter_bank=None])

	Describes properties of a discrete wavelet identified by the specified
wavelet name. For continuous wavelets see pywt.ContinuousWavelet
instead. In order to use a built-in wavelet the name parameter must be a
valid wavelet name from the pywt.wavelist() list.

Custom Wavelet objects can be created by passing a user-defined filters set
with the filter_bank parameter.

	Parameters

	
	name – Wavelet name

	filter_bank – Use a user supplied filter bank instead of a built-in Wavelet.

The filter bank object can be a list of four filters coefficients or an object
with filter_bank attribute, which returns a list of such
filters in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

Wavelet objects can also be used as a base filter banks. See section on
using custom wavelets for more information.

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')

	
name

	Wavelet name.

	
short_name

	Short wavelet name.

	
dec_lo

	Decomposition filter values.

	
dec_hi

	Decomposition filter values.

	
rec_lo

	Reconstruction filter values.

	
rec_hi

	Reconstruction filter values.

	
dec_len

	Decomposition filter length.

	
rec_len

	Reconstruction filter length.

	
filter_bank

	Returns filters list for the current wavelet in the following order:

[dec_lo, dec_hi, rec_lo, rec_hi]

	
inverse_filter_bank

	Returns list of reverse wavelet filters coefficients. The mapping from
the filter_coeffs list is as follows:

[rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-1]]

	
short_family_name

	Wavelet short family name

	
family_name

	Wavelet family name

	
orthogonal

	Set if wavelet is orthogonal

	
biorthogonal

	Set if wavelet is biorthogonal

	
symmetry

	asymmetric, near symmetric, symmetric

	
vanishing_moments_psi

	Number of vanishing moments for the wavelet function

	
vanishing_moments_phi

	Number of vanishing moments for the scaling function

Example:

>>> def format_array(arr):
... return "[%s]" % ", ".join(["%.14f" % x for x in arr])

>>> import pywt
>>> wavelet = pywt.Wavelet('db1')
>>> print(wavelet)
Wavelet db1
 Family name: Daubechies
 Short name: db
 Filters length: 2
 Orthogonal: True
 Biorthogonal: True
 Symmetry: asymmetric
 DWT: True
 CWT: False
>>> print(format_array(wavelet.dec_lo), format_array(wavelet.dec_hi))
[0.70710678118655, 0.70710678118655] [-0.70710678118655, 0.70710678118655]
>>> print(format_array(wavelet.rec_lo), format_array(wavelet.rec_hi))
[0.70710678118655, 0.70710678118655] [0.70710678118655, -0.70710678118655]

Approximating wavelet and scaling functions - Wavelet.wavefun()

	
Wavelet.wavefun(level)

	
Changed in version 0.2: The time (space) localisation of approximation function points was
added.

The wavefun() method can be used to calculate approximations of
scaling function (phi) and wavelet function (psi) at the given level
of refinement.

For orthogonal wavelets returns approximations of
scaling function and wavelet function with corresponding x-grid coordinates:

[phi, psi, x] = wavelet.wavefun(level)

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('db2')
>>> phi, psi, x = wavelet.wavefun(level=5)

For other (biorthogonal but not
orthogonal) wavelets returns approximations of
scaling and wavelet function both for decomposition and reconstruction and
corresponding x-grid coordinates:

[phi_d, psi_d, phi_r, psi_r, x] = wavelet.wavefun(level)

Example:

>>> import pywt
>>> wavelet = pywt.Wavelet('bior3.5')
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)

See also

You can find live examples of wavefun() usage and
images of all the built-in wavelets on the
Wavelet Properties Browser [http://wavelets.pybytes.com] page.
However, this website is no longer actively maintained and does not
include every wavelet present in PyWavelets. The precision of the wavelet
coefficients at that site is also lower than those included in
PyWavelets.

Using custom wavelets

PyWavelets comes with a long list of the most popular
wavelets built-in and ready to use. If you need to use a specific wavelet which
is not included in the list it is very easy to do so. Just pass a list of four
filters or an object with a filter_bank attribute as a
filter_bank argument to the Wavelet constructor.

The filters list, either in a form of a simple Python list or returned via
the filter_bank attribute, must be in the following order:

	lowpass decomposition filter

	highpass decomposition filter

	lowpass reconstruction filter

	highpass reconstruction filter

just as for the filter_bank attribute of the
Wavelet class.

The Wavelet object created in this way is a standard Wavelet instance.

The following example illustrates the way of creating custom Wavelet objects
from plain Python lists of filter coefficients and a filter bank-like object.

Example:

>>> import pywt, math
>>> c = math.sqrt(2)/2
>>> dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
>>> filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
>>> myWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)
>>>
>>> class HaarFilterBank(object):
... @property
... def filter_bank(self):
... c = math.sqrt(2)/2
... dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
... return [dec_lo, dec_hi, rec_lo, rec_hi]
>>> filter_bank = HaarFilterBank()
>>> myOtherWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)

ContinuousWavelet object

	
class pywt.ContinuousWavelet(name, dtype=np.float64)

	Describes properties of a continuous wavelet identified by the specified wavelet name.
In order to use a built-in wavelet the name parameter must be a valid
wavelet name from the pywt.wavelist() list.

	Parameters

	
	name – Wavelet name

	dtype – numpy.dtype to use for the wavelet. Can be numpy.float64 or numpy.float32.

Example:

>>> import pywt
>>> wavelet = pywt.ContinuousWavelet('gaus1')

	
name

	Continuous Wavelet name.

	
short_family_name

	Wavelet short family name

	
family_name

	Wavelet family name

	
orthogonal

	Set if wavelet is orthogonal

	
biorthogonal

	Set if wavelet is biorthogonal

	
complex_cwt

	Returns if wavelet is complex

	
lower_bound

	Set the lower bound of the effective support

	
upper_bound

	Set the upper bound of the effective support

	
center_frequency

	Set the center frequency for the shan, fbsp and cmor wavelets

	
bandwidth_frequency

	Set the bandwidth frequency for the shan, fbsp and cmor wavelets

	
fbsp_order

	Set the order for the fbsp wavelet

	
symmetry

	asymmetric, near symmetric, symmetric, anti-symmetric

Example:

>>> import pywt
>>> wavelet = pywt.ContinuousWavelet('gaus1')
>>> print(wavelet)
ContinuousWavelet gaus1
 Family name: Gaussian
 Short name: gaus
 Symmetry: anti-symmetric
 DWT: False
 CWT: True
 Complex CWT: False

Approximating wavelet functions - ContinuousWavelet.wavefun()

	
ContinuousWavelet.wavefun(level, length = None)

	The wavefun() method can be used to calculate approximations of
scaling function (psi) with grid (x). The vector length is set by length.
The vector length can also be defined by 2**level if length is not set.

For complex_cwt wavelets returns a complex approximations of
wavelet function with corresponding x-grid coordinates:

[psi, x] = wavelet.wavefun(level)

Example:

>>> import pywt
>>> wavelet = pywt.ContinuousWavelet('gaus1')
>>> psi, x = wavelet.wavefun(level=5)

Approximating wavelet functions - ContinuousWavelet.wavefun()

	
pywt.DiscreteContinuousWavelet(name[, filter_bank = None])

	
	The DiscreteContinuousWavelet() returns a

	Wavelet or a ContinuousWavelet object depending on the given name.

Example:

>>> import pywt
>>> wavelet = pywt.DiscreteContinuousWavelet('db1')
>>> print(wavelet)
Wavelet db1
 Family name: Daubechies
 Short name: db
 Filters length: 2
 Orthogonal: True
 Biorthogonal: True
 Symmetry: asymmetric
 DWT: True
 CWT: False
>>> wavelet = pywt.DiscreteContinuousWavelet('gaus1')
>>> print(wavelet)
ContinuousWavelet gaus1
 Family name: Gaussian
 Short name: gaus
 Symmetry: anti-symmetric
 DWT: False
 CWT: True
 Complex CWT: False

Signal extension modes

Because the most common and practical way of representing digital signals
in computer science is with finite arrays of values, some extrapolation
of the input data has to be performed in order to extend the signal before
computing the Discrete Wavelet Transform using the cascading
filter banks algorithm.

Depending on the extrapolation method, significant artifacts at the signal’s
borders can be introduced during that process, which in turn may lead to
inaccurate computations of the DWT at the signal’s ends.

PyWavelets provides several methods of signal extrapolation that can be used to
minimize this negative effect:

	zero - zero-padding - signal is extended by adding zero samples:

... 0 0 | x1 x2 ... xn | 0 0 ...

	constant - constant-padding - border values are replicated:

... x1 x1 | x1 x2 ... xn | xn xn ...

	symmetric - symmetric-padding - signal is extended by mirroring
samples. This mode is also known as half-sample symmetric.:

... x2 x1 | x1 x2 ... xn | xn xn-1 ...

	reflect - reflect-padding - signal is extended by reflecting
samples. This mode is also known as whole-sample symmetric.:

... x3 x2 | x1 x2 ... xn | xn-1 xn-2 ...

	periodic - periodic-padding - signal is treated as a periodic one:

... xn-1 xn | x1 x2 ... xn | x1 x2 ...

	smooth - smooth-padding - signal is extended according to the first
derivatives calculated on the edges (straight line)

	antisymmetric - anti-symmetric padding - signal is extended by
mirroring and negating samples. This mode is also known as half-sample
anti-symmetric:

... -x2 -x1 | x1 x2 ... xn | -xn -xn-1 ...

	antireflect - anti-symmetric-reflect padding - signal is extended by
reflecting anti-symmetrically about the edge samples. This mode is also
known as whole-sample anti-symmetric:

... (2*x1 - x3) (2*x1 - x2) | x1 x2 ... xn | (2*xn - xn-1) (2*xn - xn-2) ...

DWT performed for these extension modes is slightly redundant, but ensures
perfect reconstruction. To receive the smallest possible number of coefficients,
computations can be performed with the periodization mode:

	periodization - periodization - is like periodic-padding but gives the
smallest possible number of decomposition coefficients. IDWT must be
performed with the same mode.

Example:

>>> import pywt
>>> print(pywt.Modes.modes)
['zero', 'constant', 'symmetric', 'periodic', 'smooth', 'periodization', 'reflect', 'antisymmetric', 'antireflect']

The following figure illustrates how a short signal (red) gets extended (black)
outside of its original extent. Note that periodization first extends the
signal to an even length prior to using periodic boundary conditions.

"""A visual illustration of the various signal extension modes supported in
PyWavelets. For efficiency, in the C routines the array is not actually
extended as is done here. This is just a demo for easier visual explanation of
the behavior of the various boundary modes.

In practice, which signal extension mode is beneficial will depend on the
signal characteristics. For this particular signal, some modes such as
"periodic", "antisymmetric" and "zero" result in large discontinuities that
would lead to large amplitude boundary coefficients in the detail coefficients
of a discrete wavelet transform.
"""
import numpy as np
from matplotlib import pyplot as plt
from pywt._doc_utils import boundary_mode_subplot

synthetic test signal
x = 5 - np.linspace(-1.9, 1.1, 9)**2

Create a figure with one subplots per boundary mode
fig, axes = plt.subplots(3, 3, figsize=(10, 6))
plt.subplots_adjust(hspace=0.5)
axes = axes.ravel()
boundary_mode_subplot(x, 'symmetric', axes[0], symw=False)
boundary_mode_subplot(x, 'reflect', axes[1], symw=True)
boundary_mode_subplot(x, 'periodic', axes[2], symw=False)
boundary_mode_subplot(x, 'antisymmetric', axes[3], symw=False)
boundary_mode_subplot(x, 'antireflect', axes[4], symw=True)
boundary_mode_subplot(x, 'periodization', axes[5], symw=False)
boundary_mode_subplot(x, 'smooth', axes[6], symw=False)
boundary_mode_subplot(x, 'constant', axes[7], symw=False)
boundary_mode_subplot(x, 'zero', axes[8], symw=False)
plt.show()

[image: ../_images/plot_boundary_modes.png]

Notice that you can use any of the following ways of passing wavelet and mode
parameters:

>>> import pywt
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], 'db2', 'smooth')
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], pywt.Wavelet('db2'), pywt.Modes.smooth)

Note

Extending data in context of PyWavelets does not mean reallocation of the
data in the computer’s physical memory and copying values, but rather
computing the extra values only when they are needed.
This feature saves extra memory and CPU resources and helps to avoid page
swapping when handling relatively big data arrays on computers with low
physical memory.

Naming Conventions

The correspondence between PyWavelets edge modes and the extension modes
available in Matlab’s dwtmode and numpy’s pad are tabulated here for reference.

	PyWavelets

	Matlab

	numpy.pad

	symmetric

	sym, symh

	symmetric

	reflect

	symw

	reflect

	smooth

	spd, sp1

	N/A

	constant

	sp0

	edge

	zero

	zpd

	constant, cval=0

	periodic

	ppd

	wrap

	periodization

	per

	N/A

	antisymmetric

	asym, asymh

	N/A

	antireflect

	asymw

	reflect, reflect_type=’odd’

Padding using PyWavelets Signal Extension Modes - pad

	
pywt.pad(x, pad_widths, mode)

	Extend a 1D signal using a given boundary mode.

This function operates like numpy.pad() [https://numpy.org/devdocs/reference/generated/numpy.pad.html#numpy.pad] but supports all signal
extension modes that can be used by PyWavelets discrete wavelet transforms.

	Parameters

	
	xndarray

	The array to pad

	pad_widths{sequence, array_like, int}

	Number of values padded to the edges of each axis.
((before_1, after_1), … (before_N, after_N)) unique pad widths for
each axis. ((before, after),) yields same before and after pad for
each axis. (pad,) or int is a shortcut for
before = after = pad width for all axes.

	modestr, optional

	Signal extension mode, see Modes.

	Returns

	
	padndarray

	Padded array of rank equal to array with shape increased according to
pad_widths.

Notes

The performance of padding in dimensions > 1 may be substantially slower
for modes 'smooth' and 'antisymmetric' as these modes are not
supported efficiently by the underlying numpy.pad() [https://numpy.org/devdocs/reference/generated/numpy.pad.html#numpy.pad] function.

Note that the behavior of the 'constant' mode here follows the
PyWavelets convention which is different from NumPy (it is equivalent to
mode='edge' in numpy.pad() [https://numpy.org/devdocs/reference/generated/numpy.pad.html#numpy.pad]).

Pywavelets provides a function, pad(), that operate like
numpy.pad() [https://numpy.org/devdocs/reference/generated/numpy.pad.html#numpy.pad], but supporting the PyWavelets signal extension modes
discussed above. For efficiency, the DWT routines in PyWavelets do not
expclitly create padded signals using this function. It can be used to manually
prepad signals to reduce boundary effects in functions such as cwt() and
swt() that do not currently support all of these signal extension modes.

Discrete Wavelet Transform (DWT)

Wavelet transform has recently become a very popular when it comes to analysis,
de-noising and compression of signals and images. This section describes
functions used to perform single- and multilevel Discrete Wavelet Transforms.

Single level dwt

	
pywt.dwt(data, wavelet, mode='symmetric', axis=-1)

	Single level Discrete Wavelet Transform.

	Parameters

	
	dataarray_like

	Input signal

	waveletWavelet object or name

	Wavelet to use

	modestr, optional

	Signal extension mode, see Modes.

	axis: int, optional

	Axis over which to compute the DWT. If not given, the
last axis is used.

	Returns

	
	(cA, cD)tuple

	Approximation and detail coefficients.

Notes

Length of coefficients arrays depends on the selected mode.
For all modes except periodization:

len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)

For periodization mode (“per”):

len(cA) == len(cD) == ceil(len(data) / 2)

Examples

>>> import pywt
>>> (cA, cD) = pywt.dwt([1, 2, 3, 4, 5, 6], 'db1')
>>> cA
array([2.12132034, 4.94974747, 7.77817459])
>>> cD
array([-0.70710678, -0.70710678, -0.70710678])

See the signal extension modes section for the list of
available options and the dwt_coeff_len() function for information on
getting the expected result length.

The transform can be performed over one axis of multi-dimensional
data. By default this is the last axis. For multi-dimensional transforms
see the 2D transforms section.

Multilevel decomposition using wavedec

	
pywt.wavedec(data, wavelet, mode='symmetric', level=None, axis=-1)

	Multilevel 1D Discrete Wavelet Transform of data.

	Parameters

	
	data: array_like

	Input data

	waveletWavelet object or name string

	Wavelet to use

	modestr, optional

	Signal extension mode, see Modes.

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axis: int, optional

	Axis over which to compute the DWT. If not given, the
last axis is used.

	Returns

	
	[cA_n, cD_n, cD_n-1, …, cD2, cD1]list

	Ordered list of coefficients arrays
where n denotes the level of decomposition. The first element
(cA_n) of the result is approximation coefficients array and the
following elements (cD_n - cD_1) are details coefficients
arrays.

Examples

>>> from pywt import wavedec
>>> coeffs = wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
>>> cA2, cD2, cD1 = coeffs
>>> cD1
array([-0.70710678, -0.70710678, -0.70710678, -0.70710678])
>>> cD2
array([-2., -2.])
>>> cA2
array([5., 13.])

Partial Discrete Wavelet Transform data decomposition downcoef

	
pywt.downcoef(part, data, wavelet, mode='symmetric', level=1)

	Partial Discrete Wavelet Transform data decomposition.

Similar to pywt.dwt, but computes only one set of coefficients.
Useful when you need only approximation or only details at the given level.

	Parameters

	
	partstr

	Coefficients type:

	‘a’ - approximations reconstruction is performed

	‘d’ - details reconstruction is performed

	dataarray_like

	Input signal.

	waveletWavelet object or name

	Wavelet to use

	modestr, optional

	Signal extension mode, see Modes.

	levelint, optional

	Decomposition level. Default is 1.

	Returns

	
	coeffsndarray

	1-D array of coefficients.

See also

	upcoef

	

Maximum decomposition level - dwt_max_level, dwtn_max_level

	
pywt.dwt_max_level(data_len, filter_len)

	Compute the maximum useful level of decomposition.

	Parameters

	
	data_lenint

	Input data length.

	filter_lenint, str or Wavelet

	The wavelet filter length. Alternatively, the name of a discrete
wavelet or a Wavelet object can be specified.

	Returns

	
	max_levelint

	Maximum level.

Notes

The rational for the choice of levels is the maximum level where at least
one coefficient in the output is uncorrupted by edge effects caused by
signal extension. Put another way, decomposition stops when the signal
becomes shorter than the FIR filter length for a given wavelet. This
corresponds to:

\[\mathtt{max_level} = \left\lfloor\log_2\left(\mathtt{
 \frac{data_len}{filter_len - 1}}\right)\right\rfloor\]

Examples

>>> import pywt
>>> w = pywt.Wavelet('sym5')
>>> pywt.dwt_max_level(data_len=1000, filter_len=w.dec_len)
6
>>> pywt.dwt_max_level(1000, w)
6
>>> pywt.dwt_max_level(1000, 'sym5')
6

	
pywt.dwtn_max_level(shape, wavelet, axes=None)

	Compute the maximum level of decomposition for n-dimensional data.

This returns the maximum number of levels of decomposition suitable for use
with wavedec, wavedec2 or wavedecn.

	Parameters

	
	shapesequence of ints

	Input data shape.

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	axessequence of ints, optional

	Axes over which to compute the DWT. Axes may not be repeated.

	Returns

	
	levelint

	Maximum level.

Notes

The level returned is the smallest dwt_max_level over all axes.

Examples

>>> import pywt
>>> pywt.dwtn_max_level((64, 32), 'db2')
3

Result coefficients length - dwt_coeff_len

	
pywt.dwt_coeff_len(data_len, filter_len, mode='symmetric')

	Returns length of dwt output for given data length, filter length and mode

	Parameters

	
	data_lenint

	Data length.

	filter_lenint

	Filter length.

	modestr, optional

	Signal extension mode, see Modes.

	Returns

	
	lenint

	Length of dwt output.

Notes

For all modes except periodization:

len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)

for periodization mode (“per”):

len(cA) == len(cD) == ceil(len(data) / 2)

Based on the given input data length (data_len), wavelet decomposition
filter length (filter_len) and signal extension mode, the
dwt_coeff_len() function calculates the length of the resulting
coefficients arrays that would be created while performing dwt()
transform.

filter_len can be either an int or Wavelet object for
convenience.

Inverse Discrete Wavelet Transform (IDWT)

Single level idwt

	
pywt.idwt(cA, cD, wavelet, mode='symmetric', axis=-1)

	Single level Inverse Discrete Wavelet Transform.

	Parameters

	
	cAarray_like or None

	Approximation coefficients. If None, will be set to array of zeros
with same shape as cD.

	cDarray_like or None

	Detail coefficients. If None, will be set to array of zeros
with same shape as cA.

	waveletWavelet object or name

	Wavelet to use

	modestr, optional (default: ‘symmetric’)

	Signal extension mode, see Modes.

	axis: int, optional

	Axis over which to compute the inverse DWT. If not given, the
last axis is used.

	Returns

	
	rec: array_like

	Single level reconstruction of signal from given coefficients.

Examples

>>> import pywt
>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'smooth')
>>> pywt.idwt(cA, cD, 'db2', 'smooth')
array([1., 2., 3., 4., 5., 6.])

One of the neat features of idwt is that one of the cA and cD
arguments can be set to None. In that situation the reconstruction will be
performed using only the other one. Mathematically speaking, this is
equivalent to passing a zero-filled array as one of the arguments.

>>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'smooth')
>>> A = pywt.idwt(cA, None, 'db2', 'smooth')
>>> D = pywt.idwt(None, cD, 'db2', 'smooth')
>>> A + D
array([1., 2., 3., 4., 5., 6.])

Multilevel reconstruction using waverec

	
pywt.waverec(coeffs, wavelet, mode='symmetric', axis=-1)

	Multilevel 1D Inverse Discrete Wavelet Transform.

	Parameters

	
	coeffsarray_like

	Coefficients list [cAn, cDn, cDn-1, …, cD2, cD1]

	waveletWavelet object or name string

	Wavelet to use

	modestr, optional

	Signal extension mode, see Modes.

	axis: int, optional

	Axis over which to compute the inverse DWT. If not given, the
last axis is used.

Notes

It may sometimes be desired to run waverec with some sets of
coefficients omitted. This can best be done by setting the corresponding
arrays to zero arrays of matching shape and dtype. Explicitly removing
list entries or setting them to None is not supported.

Specifically, to ignore detail coefficients at level 2, one could do:

coeffs[-2] == np.zeros_like(coeffs[-2])

Examples

>>> import pywt
>>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
>>> pywt.waverec(coeffs, 'db1')
array([1., 2., 3., 4., 5., 6., 7., 8.])

Direct reconstruction with upcoef

	
pywt.upcoef(part, coeffs, wavelet, level=1, take=0)

	Direct reconstruction from coefficients.

	Parameters

	
	partstr

	Coefficients type:
* ‘a’ - approximations reconstruction is performed
* ‘d’ - details reconstruction is performed

	coeffsarray_like

	Coefficients array to recontruct

	waveletWavelet object or name

	Wavelet to use

	levelint, optional

	Multilevel reconstruction level. Default is 1.

	takeint, optional

	Take central part of length equal to ‘take’ from the result.
Default is 0.

	Returns

	
	recndarray

	1-D array with reconstructed data from coefficients.

See also

	downcoef

	

Examples

>>> import pywt
>>> data = [1,2,3,4,5,6]
>>> (cA, cD) = pywt.dwt(data, 'db2', 'smooth')
>>> pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
array([-0.25 , -0.4330127 , 1. , 2. , 3. ,
 4. , 5. , 6. , 1.78589838, -1.03108891])
>>> n = len(data)
>>> pywt.upcoef('a', cA, 'db2', take=n) + pywt.upcoef('d', cD, 'db2', take=n)
array([1., 2., 3., 4., 5., 6.])

Overview of multilevel wavelet decompositions

There are a number of different ways a wavelet decomposition can be performed
for multiresolution analysis of n-dimensional data. Here we will review the
three approaches currently implemented in PyWavelets. 2D cases are
illustrated, but each of the approaches extends to the n-dimensional case in a
straightforward manner.

Multilevel Discrete Wavelet Transform

The most common approach to the multilevel discrete wavelet transform involves
further decomposition of only the approximation subband at each subsequent
level. This is also sometimes referred to as the Mallat decomposition
[Mall89]. In 2D, the discrete wavelet transform produces four sets of
coefficients corresponding to the four possible compinations of the wavelet
decomposition filters over the two separate axes. (In n-dimensions, there
are 2**n sets of coefficients). For subsequent levels of decomposition,
only the approximation coefficients (the lowpass subband) are further
decomposed.

In PyWavelets, this decomposition is implemented for n-dimensional data by
wavedecn() and the inverse by waverecn(). 1D and 2D
versions of these routines also exist. It is illustrated in the figure below.
The top row indicates the coefficient names as used by wavedec2()
after each level of decomposition. The bottom row shows wavelet coefficients
for the camerman image (with each subband independently normalized for easier
visualization).

import numpy as np
import pywt
from matplotlib import pyplot as plt
from pywt._doc_utils import wavedec2_keys, draw_2d_wp_basis

x = pywt.data.camera().astype(np.float32)
shape = x.shape

max_lev = 3 # how many levels of decomposition to draw
label_levels = 3 # how many levels to explicitly label on the plots

fig, axes = plt.subplots(2, 4, figsize=[14, 8])
for level in range(0, max_lev + 1):
 if level == 0:
 # show the original image before decomposition
 axes[0, 0].set_axis_off()
 axes[1, 0].imshow(x, cmap=plt.cm.gray)
 axes[1, 0].set_title('Image')
 axes[1, 0].set_axis_off()
 continue

 # plot subband boundaries of a standard DWT basis
 draw_2d_wp_basis(shape, wavedec2_keys(level), ax=axes[0, level],
 label_levels=label_levels)
 axes[0, level].set_title('{} level\ndecomposition'.format(level))

 # compute the 2D DWT
 c = pywt.wavedec2(x, 'db2', mode='periodization', level=level)
 # normalize each coefficient array independently for better visibility
 c[0] /= np.abs(c[0]).max()
 for detail_level in range(level):
 c[detail_level + 1] = [d/np.abs(d).max() for d in c[detail_level + 1]]
 # show the normalized coefficients
 arr, slices = pywt.coeffs_to_array(c)
 axes[1, level].imshow(arr, cmap=plt.cm.gray)
 axes[1, level].set_title('Coefficients\n({} level)'.format(level))
 axes[1, level].set_axis_off()

plt.tight_layout()
plt.show()

[image: ../_images/plot_mallat_2d.png]

It can be seen that many of the coefficients are near zero (gray). This ability
of the wavelet transform to sparsely represent natural images is a key
property that makes it desirable in applications such as image compression and
restoration.

Fully Seperable Discrete Wavelet Transform

An alternative decomposition results in first fully decomposing one axis of the
data prior to moving onto each additional axis in turn. This is illustrated
for the 2D case in the upper right panel of the figure below. This approach has
a factor of two higher computational cost as compared to the Mallat approach,
but has advantages in compactly representing anisotropic data. A demo of this
is available [https://github.com/PyWavelets/pywt/tree/master/demo/fswavedecn_mondrian.py]).

This form of the DWT is also sometimes referred to as the tensor wavelet
transform or the hyperbolic wavelet transform. In PyWavelets it is implemented
for n-dimensional data by fswavedecn() and the inverse by
fswaverecn().

Wavelet Packet Transform

Another possible choice is to apply additional levels of decomposition to all
wavelet subbands from the first level as opposed to only the approximation
subband. This is known as the wavelet packet transform and is illustrated in
2D in the lower left panel of the figure. It is also possible to only perform
any subset of the decompositions, resulting in a wide number of potential
wavelet packet bases. An arbitrary example is shown in the lower right panel
of the figure below.

A further description is available in the
wavelet packet documentation.

For the wavelet packets, the plots below use “natural” ordering for simplicity,
but this does not directly match the “frequency” ordering for these wavelet
packets. It is possible to rearrange the coefficients into frequency ordering
(see the get_level method of WaveletPacket2D and [Wick94]
for more details).

from itertools import product
import numpy as np
from matplotlib import pyplot as plt
from pywt._doc_utils import (wavedec_keys, wavedec2_keys, draw_2d_wp_basis,
 draw_2d_fswavedecn_basis)

shape = (512, 512)

max_lev = 4 # how many levels of decomposition to draw
label_levels = 2 # how many levels to explicitly label on the plots

if False:
 fig, axes = plt.subplots(1, 4, figsize=[16, 4])
 axes = axes.ravel()
else:
 fig, axes = plt.subplots(2, 2, figsize=[8, 8])
 axes = axes.ravel()

plot a 5-level standard DWT basis
draw_2d_wp_basis(shape, wavedec2_keys(max_lev), ax=axes[0],
 label_levels=label_levels)
axes[0].set_title('wavedec2 ({} level)'.format(max_lev))

plot for the fully separable case
draw_2d_fswavedecn_basis(shape, max_lev, ax=axes[1], label_levels=label_levels)
axes[1].set_title('fswavedecn ({} level)'.format(max_lev))

get all keys corresponding to a full wavelet packet decomposition
wp_keys = list(product(['a', 'd', 'h', 'v'], repeat=max_lev))
draw_2d_wp_basis(shape, wp_keys, ax=axes[2])
axes[2].set_title('wavelet packet\n(full: {} level)'.format(max_lev))

plot an example of a custom wavelet packet basis
keys = ['aaaa', 'aaad', 'aaah', 'aaav', 'aad', 'aah', 'aava', 'aavd',
 'aavh', 'aavv', 'ad', 'ah', 'ava', 'avd', 'avh', 'avv', 'd', 'h',
 'vaa', 'vad', 'vah', 'vav', 'vd', 'vh', 'vv']
draw_2d_wp_basis(shape, keys, ax=axes[3], label_levels=label_levels)
axes[3].set_title('wavelet packet\n(custom)'.format(max_lev))

plt.tight_layout()
plt.show()

[image: ../_images/plot_2d_bases.png]

References

	Mall89

	Mallat, S.G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 7. July 1989. DOI: 10.1109/34.192463

	Wick94

	Wickerhauser, M.V. “Adapted Wavelet Analysis from Theory to Software” Wellesley. Massachusetts: A K Peters. 1994.

2D Forward and Inverse Discrete Wavelet Transform

Single level dwt2

	
pywt.dwt2(data, wavelet, mode='symmetric', axes=(-2, -1))

	2D Discrete Wavelet Transform.

	Parameters

	
	dataarray_like

	2D array with input data

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or 2-tuple of strings, optional

	Signal extension mode, see Modes. This can
also be a tuple of modes specifying the mode to use on each axis in
axes.

	axes2-tuple of ints, optional

	Axes over which to compute the DWT. Repeated elements mean the DWT will
be performed multiple times along these axes.

	Returns

	
	(cA, (cH, cV, cD))tuple

	Approximation, horizontal detail, vertical detail and diagonal
detail coefficients respectively. Horizontal refers to array axis 0
(or axes[0] for user-specified axes).

Examples

>>> import numpy as np
>>> import pywt
>>> data = np.ones((4,4), dtype=np.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> cA, (cH, cV, cD) = coeffs
>>> cA
array([[2., 2.],
 [2., 2.]])
>>> cV
array([[0., 0.],
 [0., 0.]])

The relation to the other common data layout where all the approximation and
details coefficients are stored in one big 2D array is as follows:

 | | |
 | cA(LL) | cH(LH) |
 | | |
(cA, (cH, cV, cD)) <---> -------------------
 | | |
 | cV(HL) | cD(HH) |
 | | |

PyWavelets does not follow this pattern because of pure practical reasons of simple
access to particular type of the output coefficients.

Single level idwt2

	
pywt.idwt2(coeffs, wavelet, mode='symmetric', axes=(-2, -1))

	2-D Inverse Discrete Wavelet Transform.

Reconstructs data from coefficient arrays.

	Parameters

	
	coeffstuple

	(cA, (cH, cV, cD)) A tuple with approximation coefficients and three
details coefficients 2D arrays like from dwt2. If any of these
components are set to None, it will be treated as zeros.

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or 2-tuple of strings, optional

	Signal extension mode, see Modes. This can
also be a tuple of modes specifying the mode to use on each axis in
axes.

	axes2-tuple of ints, optional

	Axes over which to compute the IDWT. Repeated elements mean the IDWT
will be performed multiple times along these axes.

Examples

>>> import numpy as np
>>> import pywt
>>> data = np.array([[1,2], [3,4]], dtype=np.float64)
>>> coeffs = pywt.dwt2(data, 'haar')
>>> pywt.idwt2(coeffs, 'haar')
array([[1., 2.],
 [3., 4.]])

2D multilevel decomposition using wavedec2

	
pywt.wavedec2(data, wavelet, mode='symmetric', level=None, axes=(-2, -1))

	Multilevel 2D Discrete Wavelet Transform.

	Parameters

	
	datandarray

	2D input data

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or 2-tuple of str, optional

	Signal extension mode, see Modes. This can
also be a tuple containing a mode to apply along each axis in axes.

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axes2-tuple of ints, optional

	Axes over which to compute the DWT. Repeated elements are not allowed.

	Returns

	
	[cAn, (cHn, cVn, cDn), … (cH1, cV1, cD1)]list

	Coefficients list. For user-specified axes, cH*
corresponds to axes[0] while cV* corresponds to axes[1].
The first element returned is the approximation coefficients for the
nth level of decomposition. Remaining elements are tuples of detail
coefficients in descending order of decomposition level.
(i.e. cH1 are the horizontal detail coefficients at the first
level)

Examples

>>> import pywt
>>> import numpy as np
>>> coeffs = pywt.wavedec2(np.ones((4,4)), 'db1')
>>> # Levels:
>>> len(coeffs)-1
2
>>> pywt.waverec2(coeffs, 'db1')
array([[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]])

2D multilevel reconstruction using waverec2

	
pywt.waverec2(coeffs, wavelet, mode='symmetric', axes=(-2, -1))

	Multilevel 2D Inverse Discrete Wavelet Transform.

	coeffslist or tuple

	Coefficients list [cAn, (cHn, cVn, cDn), … (cH1, cV1, cD1)]

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or 2-tuple of str, optional

	Signal extension mode, see Modes. This can
also be a tuple containing a mode to apply along each axis in axes.

	axes2-tuple of ints, optional

	Axes over which to compute the IDWT. Repeated elements are not allowed.

	Returns

	
	2D array of reconstructed data.

	

Notes

It may sometimes be desired to run waverec2 with some sets of
coefficients omitted. This can best be done by setting the corresponding
arrays to zero arrays of matching shape and dtype. Explicitly removing
list or tuple entries or setting them to None is not supported.

Specifically, to ignore all detail coefficients at level 2, one could do:

coeffs[-2] == tuple([np.zeros_like(v) for v in coeffs[-2]])

Examples

>>> import pywt
>>> import numpy as np
>>> coeffs = pywt.wavedec2(np.ones((4,4)), 'db1')
>>> # Levels:
>>> len(coeffs)-1
2
>>> pywt.waverec2(coeffs, 'db1')
array([[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]])

2D coordinate conventions

The labels for “horizontal” and “vertical” used by dwt2 and idwt2
follow the common mathematical convention that coordinate axis 0
is horizontal while axis 1 is vertical:

dwt2, idwt2 convention

axis 1 ^
 |
 |
 |
 |--------->
 axis 0

Note that this is different from another common convention used in computer
graphics and image processing (e.g. by matplotlib’s imshow and functions in
scikit-image). In those packages axis 0 is a vertical axis and axis 1 is
horizontal as follows:

 imshow convention

 axis 1
 |--------->
 |
 |
 |
axis 0 v

nD Forward and Inverse Discrete Wavelet Transform

	_multilevel

	Multilevel 1D and 2D Discrete Wavelet Transform and Inverse Discrete Wavelet Transform.

Single level - dwtn

	
pywt.dwtn(data, wavelet, mode='symmetric', axes=None)

	Single-level n-dimensional Discrete Wavelet Transform.

	Parameters

	
	dataarray_like

	n-dimensional array with input data.

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or tuple of string, optional

	Signal extension mode used in the decomposition,
see Modes. This can also be a tuple of modes
specifying the mode to use on each axis in axes.

	axessequence of ints, optional

	Axes over which to compute the DWT. Repeated elements mean the DWT will
be performed multiple times along these axes. A value of None (the
default) selects all axes.

Axes may be repeated, but information about the original size may be
lost if it is not divisible by 2 ** nrepeats. The reconstruction
will be larger, with additional values derived according to the
mode parameter. pywt.wavedecn should be used for multilevel
decomposition.

	Returns

	
	coeffsdict

	Results are arranged in a dictionary, where key specifies
the transform type on each dimension and value is a n-dimensional
coefficients array.

For example, for a 2D case the result will look something like this:

{'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
 'ad': <coeffs> # V(LH) - approx. on 1st dim, det. on 2nd dim
 'da': <coeffs> # H(HL) - det. on 1st dim, approx. on 2nd dim
 'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim
}

For user-specified axes, the order of the characters in the
dictionary keys map to the specified axes.

Single level - idwtn

	
pywt.idwtn(coeffs, wavelet, mode='symmetric', axes=None)

	Single-level n-dimensional Inverse Discrete Wavelet Transform.

	Parameters

	
	coeffs: dict

	Dictionary as in output of dwtn. Missing or None items
will be treated as zeros.

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or list of string, optional

	Signal extension mode used in the decomposition,
see Modes. This can also be a tuple of modes
specifying the mode to use on each axis in axes.

	axessequence of ints, optional

	Axes over which to compute the IDWT. Repeated elements mean the IDWT
will be performed multiple times along these axes. A value of None
(the default) selects all axes.

For the most accurate reconstruction, the axes should be provided in
the same order as they were provided to dwtn.

	Returns

	
	data: ndarray

	Original signal reconstructed from input data.

Multilevel decomposition - wavedecn

	
pywt.wavedecn(data, wavelet, mode='symmetric', level=None, axes=None)

	Multilevel nD Discrete Wavelet Transform.

	Parameters

	
	datandarray

	nD input data

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or tuple of str, optional

	Signal extension mode, see Modes. This can
also be a tuple containing a mode to apply along each axis in axes.

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axessequence of ints, optional

	Axes over which to compute the DWT. Axes may not be repeated. The
default is None, which means transform all axes
(axes = range(data.ndim)).

	Returns

	
	[cAn, {details_level_n}, … {details_level_1}]list

	Coefficients list. Coefficients are listed in descending order of
decomposition level. cAn are the approximation coefficients at
level n. Each details_level_i element is a dictionary
containing detail coefficients at level i of the decomposition. As
a concrete example, a 3D decomposition would have the following set of
keys in each details_level_i dictionary:

{'aad', 'ada', 'daa', 'add', 'dad', 'dda', 'ddd'}

where the order of the characters in each key map to the specified
axes.

Examples

>>> import numpy as np
>>> from pywt import wavedecn, waverecn
>>> coeffs = wavedecn(np.ones((4, 4, 4)), 'db1')
>>> # Levels:
>>> len(coeffs)-1
2
>>> waverecn(coeffs, 'db1') # doctest: +NORMALIZE_WHITESPACE
array([[[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]]])

Multilevel reconstruction - waverecn

	
pywt.waverecn(coeffs, wavelet, mode='symmetric', axes=None)

	Multilevel nD Inverse Discrete Wavelet Transform.

	coeffsarray_like

	Coefficients list [cAn, {details_level_n}, … {details_level_1}]

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or tuple of str, optional

	Signal extension mode, see Modes. This can
also be a tuple containing a mode to apply along each axis in axes.

	axessequence of ints, optional

	Axes over which to compute the IDWT. Axes may not be repeated.

	Returns

	
	nD array of reconstructed data.

	

Notes

It may sometimes be desired to run waverecn with some sets of
coefficients omitted. This can best be done by setting the corresponding
arrays to zero arrays of matching shape and dtype. Explicitly removing
list or dictionary entries or setting them to None is not supported.

Specifically, to ignore all detail coefficients at level 2, one could do:

coeffs[-2] = {k: np.zeros_like(v) for k, v in coeffs[-2].items()}

Examples

>>> import numpy as np
>>> from pywt import wavedecn, waverecn
>>> coeffs = wavedecn(np.ones((4, 4, 4)), 'db1')
>>> # Levels:
>>> len(coeffs)-1
2
>>> waverecn(coeffs, 'db1') # doctest: +NORMALIZE_WHITESPACE
array([[[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]]])

Multilevel fully separable decomposition - fswavedecn

	
pywt.fswavedecn(data, wavelet, mode='symmetric', levels=None, axes=None)

	Fully Separable Wavelet Decomposition.

This is a variant of the multilevel discrete wavelet transform where all
levels of decomposition are performed along a single axis prior to moving
onto the next axis. Unlike in wavedecn, the number of levels of
decomposition are not required to be the same along each axis which can be
a benefit for anisotropic data.

	Parameters

	
	data: array_like

	Input data

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or tuple of str, optional

	Signal extension mode, see Modes. This can
also be a tuple containing a mode to apply along each axis in axes.

	levelsint or sequence of ints, optional

	Decomposition levels along each axis (must be >= 0). If an integer is
provided, the same number of levels are used for all axes. If
levels is None (default), dwt_max_level will be used to compute
the maximum number of levels possible for each axis.

	axessequence of ints, optional

	Axes over which to compute the transform. Axes may not be repeated. The
default is to transform along all axes.

	Returns

	
	fswavedecn_resultFswavedecnResult object

	Contains the wavelet coefficients, slice objects to allow obtaining
the coefficients per detail or approximation level, and more.
See FswavedecnResult for details.

See also

	fswaverecn

	inverse of fswavedecn

Notes

This transformation has been variously referred to as the (fully) separable
wavelet transform (e.g. refs [1], [3]), the tensor-product wavelet
([2]) or the hyperbolic wavelet transform ([4]). It is well suited to
data with anisotropic smoothness.

In [2] it was demonstrated that fully separable transform performs at
least as well as the DWT for image compression. Computation time is a
factor 2 larger than that for the DWT.

References

	1

	PH Westerink. Subband Coding of Images. Ph.D. dissertation, Dept.
Elect. Eng., Inf. Theory Group, Delft Univ. Technol., Delft, The
Netherlands, 1989. (see Section 2.3)
http://resolver.tudelft.nl/uuid:a4d195c3-1f89-4d66-913d-db9af0969509

	2(1,2)

	CP Rosiene and TQ Nguyen. Tensor-product wavelet vs. Mallat
decomposition: A comparative analysis, in Proc. IEEE Int. Symp.
Circuits and Systems, Orlando, FL, Jun. 1999, pp. 431-434.

	3

	V Velisavljevic, B Beferull-Lozano, M Vetterli and PL Dragotti.
Directionlets: Anisotropic Multidirectional Representation With
Separable Filtering. IEEE Transactions on Image Processing, Vol. 15,
No. 7, July 2006.

	4

	RA DeVore, SV Konyagin and VN Temlyakov. “Hyperbolic wavelet
approximation,” Constr. Approx. 14 (1998), 1-26.

Examples

>>> from pywt import fswavedecn
>>> fs_result = fswavedecn(np.ones((32, 32)), 'sym2', levels=(1, 3))
>>> print(fs_result.detail_keys())
[(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)]
>>> approx_coeffs = fs_result.approx
>>> detail_1_2 = fs_result[(1, 2)]

Multilevel fully separable reconstruction - fswaverecn

	
pywt.fswaverecn(fswavedecn_result)

	Fully Separable Inverse Wavelet Reconstruction.

	Parameters

	
	fswavedecn_resultFswavedecnResult object

	FswavedecnResult object from fswavedecn.

	Returns

	
	reconstructedndarray

	Array of reconstructed data.

See also

	fswavedecn

	inverse of fswaverecn

Notes

This transformation has been variously referred to as the (fully) separable
wavelet transform (e.g. refs [1], [3]), the tensor-product wavelet
([2]) or the hyperbolic wavelet transform ([4]). It is well suited to
data with anisotropic smoothness.

In [2] it was demonstrated that the fully separable transform performs at
least as well as the DWT for image compression. Computation time is a
factor 2 larger than that for the DWT.

References

	1

	PH Westerink. Subband Coding of Images. Ph.D. dissertation, Dept.
Elect. Eng., Inf. Theory Group, Delft Univ. Technol., Delft, The
Netherlands, 1989. (see Section 2.3)
http://resolver.tudelft.nl/uuid:a4d195c3-1f89-4d66-913d-db9af0969509

	2(1,2)

	CP Rosiene and TQ Nguyen. Tensor-product wavelet vs. Mallat
decomposition: A comparative analysis, in Proc. IEEE Int. Symp.
Circuits and Systems, Orlando, FL, Jun. 1999, pp. 431-434.

	3

	V Velisavljevic, B Beferull-Lozano, M Vetterli and PL Dragotti.
Directionlets: Anisotropic Multidirectional Representation With
Separable Filtering. IEEE Transactions on Image Processing, Vol. 15,
No. 7, July 2006.

	4

	RA DeVore, SV Konyagin and VN Temlyakov. “Hyperbolic wavelet
approximation,” Constr. Approx. 14 (1998), 1-26.

Multilevel fully separable reconstruction coeffs - FswavedecnResult

	
class pywt.FswavedecnResult(coeffs, coeff_slices, wavelets, mode_enums, axes)

	Object representing fully separable wavelet transform coefficients.

	Parameters

	
	coeffsndarray

	The coefficient array.

	coeff_sliceslist

	List of slices corresponding to each detail or approximation
coefficient array.

	waveletslist of pywt.DiscreteWavelet objects

	The wavelets used. Will be a list with length equal to
len(axes).

	mode_enumslist of int

	The border modes used. Will be a list with length equal to
len(axes).

	axestuple of int

	The set of axes over which the transform was performed.

	Attributes

	
	approx

	ndarray: The approximation coefficients.

	axes

	List of str: The axes the transform was performed along.

	coeff_slices

	List: List of coefficient slices.

	coeffs

	ndarray: All coefficients stacked into a single array.

	levels

	List of int: Levels of decomposition along each transformed axis.

	modes

	List of str: The border mode used along each transformed axis.

	ndim

	int: Number of data dimensions.

	ndim_transform

	int: Number of axes transformed.

	wavelet_names

	List of pywt.DiscreteWavelet: wavelet for each transformed axis.

	wavelets

	List of pywt.DiscreteWavelet: wavelet for each transformed axis.

Methods

	detail_keys()

	Return a list of all detail coefficient keys.

Handling DWT Coefficients

Convenience routines are available for converting the outputs of the multilevel
dwt functions (wavedec, wavedec2 and wavedecn) to and from a
single, concatenated coefficient array.

Concatenating all coefficients into a single n-d array

	
pywt.coeffs_to_array(coeffs, padding=0, axes=None)

	Arrange a wavelet coefficient list from wavedecn into a single array.

	Parameters

	
	coeffsarray-like

	Dictionary of wavelet coefficients as returned by pywt.wavedecn

	paddingfloat or None, optional

	The value to use for the background if the coefficients cannot be
tightly packed. If None, raise an error if the coefficients cannot be
tightly packed.

	axessequence of ints, optional

	Axes over which the DWT that created coeffs was performed. The
default value of None corresponds to all axes.

	Returns

	
	coeff_arrarray-like

	Wavelet transform coefficient array.

	coeff_sliceslist

	List of slices corresponding to each coefficient. As a 2D example,
coeff_arr[coeff_slices[1]['dd']] would extract the first level
detail coefficients from coeff_arr.

See also

	array_to_coeffs

	the inverse of coeffs_to_array

Notes

Assume a 2D coefficient dictionary, c, from a two-level transform.

Then all 2D coefficients will be stacked into a single larger 2D array
as follows:

+---------------+---------------+-------------------------------+
c[0]	c[1]['da']	
+---------------+---------------+ c[2]['da']		
c[1]['ad']	c[1]['dd']	
+---------------+---------------+ ------------------------------+		
c[2]['ad']	c[2]['dd']	
+-------------------------------+-------------------------------+

If the transform was not performed with mode “periodization” or the signal
length was not a multiple of 2**level, coefficients at each subsequent
scale will not be exactly 1/2 the size of those at the previous level due
to additional coefficients retained to handle the boundary condition. In
these cases, the default setting of padding=0 indicates to pad the
individual coefficient arrays with 0 as needed so that they can be stacked
into a single, contiguous array.

Examples

>>> import pywt
>>> cam = pywt.data.camera()
>>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
>>> arr, coeff_slices = pywt.coeffs_to_array(coeffs)

Splitting concatenated coefficient array back into its components

	
pywt.array_to_coeffs(arr, coeff_slices, output_format='wavedecn')

	Convert a combined array of coefficients back to a list compatible with
waverecn.

	Parameters

	
	arrarray-like

	An array containing all wavelet coefficients. This should have been
generated via coeffs_to_array.

	coeff_sliceslist of tuples

	List of slices corresponding to each coefficient as obtained from
array_to_coeffs.

	output_format{‘wavedec’, ‘wavedec2’, ‘wavedecn’}

	Make the form of the coefficients compatible with this type of
multilevel transform.

	Returns

	
	coeffs: array-like

	Wavelet transform coefficient array.

See also

	coeffs_to_array

	the inverse of array_to_coeffs

Notes

A single large array containing all coefficients will have subsets stored,
into a waverecn list, c, as indicated below:

+---------------+---------------+-------------------------------+
c[0]	c[1]['da']	
+---------------+---------------+ c[2]['da']		
c[1]['ad']	c[1]['dd']	
+---------------+---------------+ ------------------------------+		
c[2]['ad']	c[2]['dd']	
+-------------------------------+-------------------------------+

Examples

>>> import pywt
>>> from numpy.testing import assert_array_almost_equal
>>> cam = pywt.data.camera()
>>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
>>> arr, coeff_slices = pywt.coeffs_to_array(coeffs)
>>> coeffs_from_arr = pywt.array_to_coeffs(arr, coeff_slices,
... output_format='wavedecn')
>>> cam_recon = pywt.waverecn(coeffs_from_arr, wavelet='db2')
>>> assert_array_almost_equal(cam, cam_recon)

Raveling and unraveling coefficients to/from a 1D array

	
pywt.ravel_coeffs(coeffs, axes=None)

	Ravel a set of multilevel wavelet coefficients into a single 1D array.

	Parameters

	
	coeffsarray-like

	A list of multilevel wavelet coefficients as returned by
wavedec, wavedec2 or wavedecn. This function is also
compatible with the output of swt, swt2 and swtn if those
functions were called with trim_approx=True.

	axessequence of ints, optional

	Axes over which the DWT that created coeffs was performed. The
default value of None corresponds to all axes.

	Returns

	
	coeff_arrarray-like

	Wavelet transform coefficient array. All coefficients have been
concatenated into a single array.

	coeff_sliceslist

	List of slices corresponding to each coefficient. As a 2D example,
coeff_arr[coeff_slices[1]['dd']] would extract the first level
detail coefficients from coeff_arr.

	coeff_shapeslist

	List of shapes corresponding to each coefficient. For example, in 2D,
coeff_shapes[1]['dd'] would contain the original shape of the first
level detail coefficients array.

See also

	unravel_coeffs

	the inverse of ravel_coeffs

Examples

>>> import pywt
>>> cam = pywt.data.camera()
>>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
>>> arr, coeff_slices, coeff_shapes = pywt.ravel_coeffs(coeffs)

	
pywt.unravel_coeffs(arr, coeff_slices, coeff_shapes, output_format='wavedecn')

	Unravel a raveled array of multilevel wavelet coefficients.

	Parameters

	
	arrarray-like

	An array containing all wavelet coefficients. This should have been
generated by applying ravel_coeffs to the output of wavedec,
wavedec2 or wavedecn (or via swt, swt2 or swtn
with trim_approx=True).

	coeff_sliceslist of tuples

	List of slices corresponding to each coefficient as obtained from
ravel_coeffs.

	coeff_shapeslist of tuples

	List of shapes corresponding to each coefficient as obtained from
ravel_coeffs.

	output_format{‘wavedec’, ‘wavedec2’, ‘wavedecn’, ‘swt’, ‘swt2’, ‘swtn’}, optional

	Make the form of the unraveled coefficients compatible with this type
of multilevel transform. The default is 'wavedecn'.

	Returns

	
	coeffs: list

	List of wavelet transform coefficients. The specific format of the list
elements is determined by output_format.

See also

	ravel_coeffs

	the inverse of unravel_coeffs

Examples

>>> import pywt
>>> from numpy.testing import assert_array_almost_equal
>>> cam = pywt.data.camera()
>>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
>>> arr, coeff_slices, coeff_shapes = pywt.ravel_coeffs(coeffs)
>>> coeffs_from_arr = pywt.unravel_coeffs(arr, coeff_slices, coeff_shapes,
... output_format='wavedecn')
>>> cam_recon = pywt.waverecn(coeffs_from_arr, wavelet='db2')
>>> assert_array_almost_equal(cam, cam_recon)

Multilevel: Total size of all coefficients - wavedecn_size

	
pywt.wavedecn_size(shapes)

	Compute the total number of wavedecn coefficients.

	Parameters

	
	shapeslist of coefficient shapes

	A set of coefficient shapes as returned by wavedecn_shapes.
Alternatively, the user can specify a set of coefficients as returned
by wavedecn.

	Returns

	
	sizeint

	The total number of coefficients.

Examples

>>> import numpy as np
>>> import pywt
>>> data_shape = (64, 32)
>>> shapes = pywt.wavedecn_shapes(data_shape, 'db2', mode='periodization')
>>> pywt.wavedecn_size(shapes)
2048
>>> coeffs = pywt.wavedecn(np.ones(data_shape), 'sym4', mode='symmetric')
>>> pywt.wavedecn_size(coeffs)
3087

Multilevel: n-d coefficient shapes - wavedecn_shapes

	
pywt.wavedecn_shapes(shape, wavelet, mode='symmetric', level=None, axes=None)

	Subband shapes for a multilevel nD discrete wavelet transform.

	Parameters

	
	shapesequence of ints

	The shape of the data to be transformed.

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	modestr or tuple of str, optional

	Signal extension mode, see Modes. This can
also be a tuple containing a mode to apply along each axis in axes.

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axessequence of ints, optional

	Axes over which to compute the DWT. Axes may not be repeated. The
default is None, which means transform all axes
(axes = range(data.ndim)).

	Returns

	
	shapes[cAn, {details_level_n}, … {details_level_1}]list

	Coefficients shape list. Mirrors the output of wavedecn, except
it contains only the shapes of the coefficient arrays rather than the
arrays themselves.

Examples

>>> import pywt
>>> pywt.wavedecn_shapes((64, 32), wavelet='db2', level=3, axes=(0,))
[(10, 32), {'d': (10, 32)}, {'d': (18, 32)}, {'d': (33, 32)}]

Stationary Wavelet Transform

Stationary Wavelet Transform (SWT) [http://en.wikipedia.org/wiki/Stationary_wavelet_transform],
also known as Undecimated wavelet transform or Algorithme à trous is a translation-invariance modification of the Discrete Wavelet Transform that
does not decimate coefficients at every transformation level.

Multilevel 1D swt

	
pywt.swt(data, wavelet, level=None, start_level=0, axis=-1, trim_approx=False, norm=False)

	Multilevel 1D stationary wavelet transform.

	Parameters

	
	data

	Input signal

	wavelet

	Wavelet to use (Wavelet object or name)

	levelint, optional

	The number of decomposition steps to perform.

	start_levelint, optional

	The level at which the decomposition will begin (it allows one to
skip a given number of transform steps and compute
coefficients starting from start_level) (default: 0)

	axis: int, optional

	Axis over which to compute the SWT. If not given, the
last axis is used.

	trim_approxbool, optional

	If True, approximation coefficients at the final level are retained.

	normbool, optional

	If True, transform is normalized so that the energy of the coefficients
will be equal to the energy of data. In other words,
np.linalg.norm(data.ravel()) will equal the norm of the
concatenated transform coefficients when trim_approx is True.

	Returns

	
	coeffslist

	List of approximation and details coefficients pairs in order
similar to wavedec function:

[(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]

where n equals input parameter level.

If start_level = m is given, then the beginning m steps are
skipped:

[(cAm+n, cDm+n), ..., (cAm+1, cDm+1), (cAm, cDm)]

If trim_approx is True, then the output list is exactly as in
pywt.wavedec, where the first coefficient in the list is the
approximation coefficient at the final level and the rest are the
detail coefficients:

[cAn, cDn, ..., cD2, cD1]

Notes

The implementation here follows the “algorithm a-trous” and requires that
the signal length along the transformed axis be a multiple of 2**level.
If this is not the case, the user should pad up to an appropriate size
using a function such as numpy.pad.

A primary benefit of this transform in comparison to its decimated
counterpart (pywt.wavedecn), is that it is shift-invariant. This comes
at cost of redundancy in the transform (the size of the output coefficients
is larger than the input).

When the following three conditions are true:

	The wavelet is orthogonal

	swt is called with norm=True

	swt is called with trim_approx=True

the transform has the following additional properties that may be
desirable in applications:

	energy is conserved

	variance is partitioned across scales

When used with norm=True, this transform is closely related to the
multiple-overlap DWT (MODWT) as popularized for time-series analysis,
although the underlying implementation is slightly different from the one
published in [1]. Specifically, the implementation used here requires a
signal that is a multiple of 2**level in length.

References

	1

	DB Percival and AT Walden. Wavelet Methods for Time Series Analysis.
Cambridge University Press, 2000.

Multilevel 2D swt2

	
pywt.swt2(data, wavelet, level, start_level=0, axes=(-2, -1), trim_approx=False, norm=False)

	Multilevel 2D stationary wavelet transform.

	Parameters

	
	dataarray_like

	2D array with input data

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a tuple of wavelets to apply per
axis in axes.

	levelint

	The number of decomposition steps to perform.

	start_levelint, optional

	The level at which the decomposition will start (default: 0)

	axes2-tuple of ints, optional

	Axes over which to compute the SWT. Repeated elements are not allowed.

	trim_approxbool, optional

	If True, approximation coefficients at the final level are retained.

	normbool, optional

	If True, transform is normalized so that the energy of the coefficients
will be equal to the energy of data. In other words,
np.linalg.norm(data.ravel()) will equal the norm of the
concatenated transform coefficients when trim_approx is True.

	Returns

	
	coeffslist

	Approximation and details coefficients (for start_level = m).
If trim_approx is False, approximation coefficients are
retained for all levels:

[
 (cA_m+level,
 (cH_m+level, cV_m+level, cD_m+level)
),
 ...,
 (cA_m+1,
 (cH_m+1, cV_m+1, cD_m+1)
),
 (cA_m,
 (cH_m, cV_m, cD_m)
)
]

where cA is approximation, cH is horizontal details, cV is
vertical details, cD is diagonal details and m is start_level.

If trim_approx is True, approximation coefficients are only
retained at the final level of decomposition. This matches the format
used by pywt.wavedec2:

[
 cA_m+level,
 (cH_m+level, cV_m+level, cD_m+level),
 ...,
 (cH_m+1, cV_m+1, cD_m+1),
 (cH_m, cV_m, cD_m),
]

Notes

The implementation here follows the “algorithm a-trous” and requires that
the signal length along the transformed axes be a multiple of 2**level.
If this is not the case, the user should pad up to an appropriate size
using a function such as numpy.pad.

A primary benefit of this transform in comparison to its decimated
counterpart (pywt.wavedecn), is that it is shift-invariant. This comes
at cost of redundancy in the transform (the size of the output coefficients
is larger than the input).

When the following three conditions are true:

	The wavelet is orthogonal

	swt2 is called with norm=True

	swt2 is called with trim_approx=True

the transform has the following additional properties that may be
desirable in applications:

	energy is conserved

	variance is partitioned across scales

Multilevel n-dimensional swtn

	
pywt.swtn(data, wavelet, level, start_level=0, axes=None, trim_approx=False, norm=False)

	n-dimensional stationary wavelet transform.

	Parameters

	
	dataarray_like

	n-dimensional array with input data.

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple of wavelets to apply per
axis in axes.

	levelint

	The number of decomposition steps to perform.

	start_levelint, optional

	The level at which the decomposition will start (default: 0)

	axessequence of ints, optional

	Axes over which to compute the SWT. A value of None (the
default) selects all axes. Axes may not be repeated.

	trim_approxbool, optional

	If True, approximation coefficients at the final level are retained.

	normbool, optional

	If True, transform is normalized so that the energy of the coefficients
will be equal to the energy of data. In other words,
np.linalg.norm(data.ravel()) will equal the norm of the
concatenated transform coefficients when trim_approx is True.

	Returns

	
	[{coeffs_level_n}, …, {coeffs_level_1}]: list of dict

	Results for each level are arranged in a dictionary, where the key
specifies the transform type on each dimension and value is a
n-dimensional coefficients array.

For example, for a 2D case the result at a given level will look
something like this:

{'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
 'ad': <coeffs> # V(LH) - approx. on 1st dim, det. on 2nd dim
 'da': <coeffs> # H(HL) - det. on 1st dim, approx. on 2nd dim
 'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim
}

For user-specified axes, the order of the characters in the
dictionary keys map to the specified axes.

If trim_approx is True, the first element of the list contains
the array of approximation coefficients from the final level of
decomposition, while the remaining coefficient dictionaries contain
only detail coefficients. This matches the behavior of pywt.wavedecn.

Notes

The implementation here follows the “algorithm a-trous” and requires that
the signal length along the transformed axes be a multiple of 2**level.
If this is not the case, the user should pad up to an appropriate size
using a function such as numpy.pad.

A primary benefit of this transform in comparison to its decimated
counterpart (pywt.wavedecn), is that it is shift-invariant. This comes
at cost of redundancy in the transform (the size of the output coefficients
is larger than the input).

When the following three conditions are true:

	The wavelet is orthogonal

	swtn is called with norm=True

	swtn is called with trim_approx=True

the transform has the following additional properties that may be
desirable in applications:

	energy is conserved

	variance is partitioned across scales

Maximum decomposition level - swt_max_level

	
pywt.swt_max_level(input_len)

	Calculates the maximum level of Stationary Wavelet Transform for data of
given length.

	Parameters

	
	input_lenint

	Input data length.

	Returns

	
	max_levelint

	Maximum level of Stationary Wavelet Transform for data of given length.

Notes

For the current implementation of the stationary wavelet transform, this
corresponds to the number of times input_len is evenly divisible by
two. In other words, for an n-level transform, the signal length must be a
multiple of 2**n. numpy.pad can be used to pad a signal up to an
appropriate length as needed.

Inverse Stationary Wavelet Transform

Inverse stationary wavelet transforms are provided.

Note: These inverse transforms are not yet optimized for speed. Only, the
n-dimensional inverse transform currently has axes support.

Multilevel 1D iswt

	
pywt.iswt(coeffs, wavelet, norm=False, axis=-1)

	Multilevel 1D inverse discrete stationary wavelet transform.

	Parameters

	
	coeffsarray_like

	Coefficients list of tuples:

[(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]

where cA is approximation, cD is details. Index 1 corresponds to
start_level from pywt.swt.

	waveletWavelet object or name string

	Wavelet to use

	normbool, optional

	Controls the normalization used by the inverse transform. This must
be set equal to the value that was used by pywt.swt to preserve the
energy of a round-trip transform.

	Returns

	
	1D array of reconstructed data.

	

Examples

>>> import pywt
>>> coeffs = pywt.swt([1,2,3,4,5,6,7,8], 'db2', level=2)
>>> pywt.iswt(coeffs, 'db2')
array([1., 2., 3., 4., 5., 6., 7., 8.])

Multilevel 2D iswt2

	
pywt.iswt2(coeffs, wavelet, norm=False, axes=(-2, -1))

	Multilevel 2D inverse discrete stationary wavelet transform.

	Parameters

	
	coeffslist

	Approximation and details coefficients:

[
 (cA_n,
 (cH_n, cV_n, cD_n)
),
 ...,
 (cA_2,
 (cH_2, cV_2, cD_2)
),
 (cA_1,
 (cH_1, cV_1, cD_1)
)
]

where cA is approximation, cH is horizontal details, cV is
vertical details, cD is diagonal details and n is the number of
levels. Index 1 corresponds to start_level from pywt.swt2.

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a 2-tuple of wavelets to apply per
axis.

	normbool, optional

	Controls the normalization used by the inverse transform. This must
be set equal to the value that was used by pywt.swt2 to preserve
the energy of a round-trip transform.

	Returns

	
	2D array of reconstructed data.

	

Examples

>>> import pywt
>>> coeffs = pywt.swt2([[1,2,3,4],[5,6,7,8],
... [9,10,11,12],[13,14,15,16]],
... 'db1', level=2)
>>> pywt.iswt2(coeffs, 'db1')
array([[1., 2., 3., 4.],
 [5., 6., 7., 8.],
 [9., 10., 11., 12.],
 [13., 14., 15., 16.]])

Multilevel n-dimensional iswtn

	
pywt.iswtn(coeffs, wavelet, axes=None, norm=False)

	Multilevel nD inverse discrete stationary wavelet transform.

	Parameters

	
	coeffslist

	[{coeffs_level_n}, …, {coeffs_level_1}]: list of dict

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple of wavelets to apply per
axis in axes.

	axessequence of ints, optional

	Axes over which to compute the inverse SWT. Axes may not be repeated.
The default is None, which means transform all axes
(axes = range(data.ndim)).

	normbool, optional

	Controls the normalization used by the inverse transform. This must
be set equal to the value that was used by pywt.swtn to preserve
the energy of a round-trip transform.

	Returns

	
	nD array of reconstructed data.

	

Examples

>>> import pywt
>>> coeffs = pywt.swtn([[1,2,3,4],[5,6,7,8],
... [9,10,11,12],[13,14,15,16]],
... 'db1', level=2)
>>> pywt.iswtn(coeffs, 'db1')
array([[1., 2., 3., 4.],
 [5., 6., 7., 8.],
 [9., 10., 11., 12.],
 [13., 14., 15., 16.]])

Multiresolution Analysis

The functions in this module can be used to project a signal onto wavelet
subspaces and an approximation subspace. This is an additive decomposition such
that the sum of the coefficients equals the original signal. The projected
signal coefficients remains temporally aligned with the original, regardless
of the symmetry of the wavelet used for the analysis.

Multilevel 1D mra

	
pywt.mra(data, wavelet, level=None, axis=-1, transform='swt', mode='periodization')

	Forward 1D multiresolution analysis.

It is a projection onto the wavelet subspaces.

	Parameters

	
	data: array_like

	Input data

	waveletWavelet object or name string

	Wavelet to use

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axis: int, optional

	Axis over which to compute the DWT. If not given, the last axis is
used. Currently only available when transform='dwt'.

	transform{‘dwt’, ‘swt’}

	Whether to use the DWT or SWT for the transforms.

	modestr, optional

	Signal extension mode, see Modes (default: ‘symmetric’). This option
is only used when transform=’dwt’.

	Returns

	
	[cAn, {details_level_n}, … {details_level_1}]list

	For more information, see the detailed description in wavedec

See also

	imra, swt

	

Notes

This is sometimes referred to as an additive decomposition because the
inverse transform (imra) is just the sum of the coefficient arrays
[1]. The decomposition using transform='dwt' corresponds to section
2.2 while that using an undecimated transform (transform='swt') is
described in section 3.2 and appendix A.

This transform does not share the variance partition property of swt
with norm=True. It does however, result in coefficients that are
temporally aligned regardless of the symmetry of the wavelet used.

The redundancy of this transform is (level + 1).

References

	1

	Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
https://doi.org/10.2307/2965551

Multilevel 2D mra2

	
pywt.mra2(data, wavelet, level=None, axes=(-2, -1), transform='swt2', mode='periodization')

	Forward 2D multiresolution analysis.

It is a projection onto wavelet subspaces.

	Parameters

	
	data: array_like

	Input data

	waveletWavelet object or name string, or 2-tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axes2-tuple of ints, optional

	Axes over which to compute the DWT. Repeated elements are not allowed.
Currently only available when transform='dwt2'.

	transform{‘dwt2’, ‘swt2’}

	Whether to use the DWT or SWT for the transforms.

	modestr or 2-tuple of str, optional

	Signal extension mode, see Modes (default: ‘symmetric’). This option
is only used when transform=’dwt2’.

	Returns

	
	coeffslist

	For more information, see the detailed description in wavedec2

See also

	imra2, swt2

	

Notes

This is sometimes referred to as an additive decomposition because the
inverse transform (imra2) is just the sum of the coefficient arrays
[1]. The decomposition using transform='dwt' corresponds to section
2.2 while that using an undecimated transform (transform='swt') is
described in section 3.2 and appendix A.

This transform does not share the variance partition property of swt2
with norm=True. It does however, result in coefficients that are
temporally aligned regardless of the symmetry of the wavelet used.

The redundancy of this transform is 3 * level + 1.

References

	1

	Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
https://doi.org/10.2307/2965551

Multilevel n-dimensional mran

	
pywt.mran(data, wavelet, level=None, axes=None, transform='swtn', mode='periodization')

	Forward nD multiresolution analysis.

It is a projection onto the wavelet subspaces.

	Parameters

	
	data: array_like

	Input data

	waveletWavelet object or name string, or tuple of wavelets

	Wavelet to use. This can also be a tuple containing a wavelet to
apply along each axis in axes.

	levelint, optional

	Decomposition level (must be >= 0). If level is None (default) then it
will be calculated using the dwt_max_level function.

	axestuple of ints, optional

	Axes over which to compute the DWT. Repeated elements are not allowed.

	transform{‘dwtn’, ‘swtn’}

	Whether to use the DWT or SWT for the transforms.

	modestr or tuple of str, optional

	Signal extension mode, see Modes (default: ‘symmetric’). This option
is only used when transform=’dwtn’.

	Returns

	
	coeffslist

	For more information, see the detailed description in wavedecn.

See also

	imran, swtn

	

Notes

This is sometimes referred to as an additive decomposition because the
inverse transform (imran) is just the sum of the coefficient arrays
[1]. The decomposition using transform='dwt' corresponds to section
2.2 while that using an undecimated transform (transform='swt') is
described in section 3.2 and appendix A.

This transform does not share the variance partition property of swtn
with norm=True. It does however, result in coefficients that are
temporally aligned regardless of the symmetry of the wavelet used.

The redundancy of this transform is (2**n - 1) * level + 1 where n
corresponds to the number of axes transformed.

References

	1

	Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
https://doi.org/10.2307/2965551

Inverse Multilevel 1D imra

	
pywt.imra(mra_coeffs)

	Inverse 1D multiresolution analysis via summation.

	Parameters

	
	mra_coeffslist of ndarray

	Multiresolution analysis coefficients as returned by mra.

	Returns

	
	recndarray

	The reconstructed signal.

See also

	mra

	

References

	1

	Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
https://doi.org/10.2307/2965551

Inverse Multilevel 2D imra2

	
pywt.imra2(mra_coeffs)

	Inverse 2D multiresolution analysis via summation.

	Parameters

	
	mra_coeffslist

	Multiresolution analysis coefficients as returned by mra2.

	Returns

	
	recndarray

	The reconstructed signal.

See also

	mra2

	

References

	1

	Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
https://doi.org/10.2307/2965551

Inverse Multilevel n-dimensional imran

	
pywt.imran(mra_coeffs)

	Inverse nD multiresolution analysis via summation.

	Parameters

	
	mra_coeffslist

	Multiresolution analysis coefficients as returned by mra2.

	Returns

	
	recndarray

	The reconstructed signal.

See also

	mran

	

References

	1

	Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
https://doi.org/10.2307/2965551

Wavelet Packets

PyWavelets implements one-dimensional, two-dimensional and n-dimensional
wavelet packet transform structures. The higher dimensional structures almost
completely sharing programming interface with the one-dimensional tree
structure.

In order to achieve this simplification, a new inheritance scheme was used
in which a BaseNode base node class is a superclass for the
Node, Node2D and NodeND
classes.

The node classes are used as data wrappers and can be organized in trees (
binary trees for 1D transform case, quad-trees for the 2D one and 2**N-ary
trees in ND). They are also superclasses to the WaveletPacket,
WaveletPacket2D and WaveletPacketND classes that
are used as the decomposition tree roots and contain a couple additional
methods.

Here 1D, 2D and ND refer to the number of axes of the data to be transformed.
All wavelet packet objects can operate on general n-dimensional arrays, but the
1D or 2D classes apply transforms along only 1 or 2 dimensions. The ND classes
allow transforms over an arbtirary number of axes of n-dimensional data.

The below diagram illustrates the inheritance tree:

	BaseNode - common interface for 1D and 2D nodes:

	Node - data carrier node in a 1D decomposition tree

	WaveletPacket - 1D decomposition tree root node

	Node2D - data carrier node in a 2D decomposition tree

	WaveletPacket2D - 2D decomposition tree root node

	NodeND - data carrier node in a ND decomposition tree

	WaveletPacketND - ND decomposition tree root node

BaseNode - a common interface of WaveletPacket, WaveletPacket2D and WaveletPacketND

	
class pywt.BaseNode

	
Note

The BaseNode is a base class for Node, Node2D,
and NodeND. It should not be used directly unless creating
a new transformation type. It is included here to document the
common interface of the node and wavelet packet transform classes.

	
__init__(parent, data, node_name)

	
	Parameters

	
	parent – parent node. If parent is None then the node is
considered detached.

	data – The data associated with the node. An n-dimensional
numeric array.

	node_name – a name identifying the coefficients type.
See Node.node_name and Node2D.node_name
for information on the accepted subnodes names.

	
data

	Data associated with the node. An n-dimensional numeric array.

	
parent

	Parent node. Used in tree navigation. None for root node.

	
wavelet

	Wavelet used for decomposition and reconstruction. Inherited
from parent node.

	
axes

	A tuple of ints containing the axes along which the wavelet packet
transform is to be applied.

	
mode

	Signal extension mode for the dwt() (dwt2())
and idwt() (idwt2()) decomposition and reconstruction
functions. Inherited from parent node.

	
level

	Decomposition level of the current node. 0 for root (original data),
1 for the first decomposition level, etc.

	
path

	Path string defining position of the node in the decomposition tree.

	
path_tuple

	A version of path, but in tuple form rather than as a single
string. The tuple form is easier to work with for n-dimensional transforms.
The length of the tuple will be equal to the number of levels of
decomposition at the current node.

	
node_name

	Node name describing data coefficients type of the
current subnode.

See Node.node_name and Node2D.node_name.

	
maxlevel

	Maximum allowed level of decomposition. Evaluated from parent or child
nodes.

	
is_empty

	Checks if data attribute is None.

	
has_any_subnode

	Checks if node has any subnodes (is not a leaf node).

	
decompose()

	Performs Discrete Wavelet Transform on the data and
returns transform coefficients.

	
reconstruct([update=False])

	Performs Inverse Discrete Wavelet Transform on subnodes coefficients and
returns reconstructed data for the current level.

	Parameters

	update – If set, the data attribute will be
updated with the reconstructed value.

Note

Descends to subnodes and recursively
calls reconstruct() on them.

	
get_subnode(part[, decompose=True])

	Returns subnode or None (see decomposition flag description).

	Parameters

	
	part – Subnode name

	decompose – If True and subnode does not exist, it will be created
using coefficients from the DWT decomposition of the
current node.

	
__getitem__(path)

	Used to access nodes in the decomposition tree by string path.

	Parameters

	path – Path string composed from valid node names. See
Node.node_name and Node2D.node_name for node
naming convention.

Similar to get_subnode() method with decompose=True, but
can access nodes on any level in the decomposition tree.

If node does not exist yet, it will be created by decomposition of its
parent node.

	
__setitem__(path, data)

	Used to set node or node’s data in the decomposition tree. Nodes are
identified by string path.

	Parameters

	
	path – Path string composed from valid node names.
See Node.node_name and Node2D.node_name for
node naming convention.

	data – numeric array or BaseNode subclass.

	
__delitem__(path)

	Used to delete node from the decomposition tree.

	Parameters

	path – Path string composed from valid node names.
See Node.node_name and Node2D.node_name for
node naming convention.

	
get_leaf_nodes([decompose=False])

	Traverses through the decomposition tree and collects leaf nodes (nodes
without any subnodes).

	Parameters

	decompose – If decompose is True, the method will try to
decompose the tree up to the
maximum level.

	
walk(self, func[, args=()[, kwargs={}[, decompose=True]]])

	Traverses the decomposition tree and calls func(node, *args, **kwargs)
on every node. If func returns True, descending to subnodes will
continue.

	Parameters

	
	func – callable accepting BaseNode as the first param and
optional positional and keyword arguments:

func(node, *args, **kwargs)

	decompose – If decompose is True (default), the method will
also try to decompose the tree up to the
maximum level.

	Args

	arguments to pass to the func

	Kwargs

	keyword arguments to pass to the func

	
walk_depth(self, func[, args=()[, kwargs={}[, decompose=False]]])

	Similar to walk() but traverses the tree in depth-first
order.

	Parameters

	
	func – callable accepting BaseNode as the first param and
optional positional and keyword arguments:

func(node, *args, **kwargs)

	decompose – If decompose is True, the method will also try
to decompose the tree up to the
maximum level.

	Args

	arguments to pass to the func

	Kwargs

	keyword arguments to pass to the func

WaveletPacket and Node

	
class pywt.Node(BaseNode)

	
	
node_name

	Node name describing data coefficients type of the
current subnode.

	For WaveletPacket case it is just as in dwt():

	
	a - approximation coefficients

	d - details coefficients

	
decompose()

	
See also

dwt() for 1D Discrete Wavelet Transform output coefficients.

	
reconstruct()

	
See also

idwt() for 1D Inverse Discrete Wavelet Transform

	
class pywt.WaveletPacket(Node)

	
	
__init__(data, wavelet[, mode='symmetric'[, maxlevel=None[, axis=-1]]])

	
	Parameters

	
	data – data associated with the node. N-dimensional numeric array.

	wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the wavelist() list or a Wavelet object instance.

	mode – Signal extension mode for the dwt()
and idwt() decomposition and reconstruction functions.

	maxlevel – Maximum allowed level of decomposition. If not specified
it will be calculated based on the wavelet and
data length using pywt.dwt_max_level().

	axis – The axis of the array that is to be transformed.

	
get_level(level[, order="natural"[, decompose=True]])

	Collects nodes from the given level of decomposition.

	Parameters

	
	level – Specifies decomposition level from which the nodes will
be collected.

	order – Specifies nodes order - natural (natural) or frequency
(freq).

	decompose – If set then the method will try to decompose the data up
to the specified level.

If nodes at the given level are missing (i.e. the tree is partially
decomposed) and the decompose is set to False, only existing nodes
will be returned.

	
reconstruct([update=True])

	Reconstruct data from the subnodes.

	Parameters

	update – A boolean indicating whether the coefficients of the
current node and its subnodes will be replaced with values
from the reconstruction.

WaveletPacket2D and Node2D

	
class pywt.Node2D(BaseNode)

	
	
node_name

	
	For WaveletPacket2D case it is just as in dwt2():

	
	a - approximation coefficients (LL)

	h - horizontal detail coefficients (LH)

	v - vertical detail coefficients (HL)

	d - diagonal detail coefficients (HH)

	
decompose()

	
See also

dwt2() for 2D Discrete Wavelet Transform output coefficients.

	
reconstruct()

	
See also

idwt2() for 2D Inverse Discrete Wavelet Transform

	
expand_2d_path(self, path):

	

	
class pywt.WaveletPacket2D(Node2D)

	
	
__init__(data, wavelet[, mode='symmetric'[, maxlevel=None[, axes=(-2, -1)]]])

	
	Parameters

	
	data – data associated with the node. N-dimensional numeric array.

	wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the wavelist() list or a Wavelet object instance.

	mode – Signal extension mode for the dwt()
and idwt() decomposition and reconstruction functions.

	maxlevel – Maximum allowed level of decomposition. If not specified
it will be calculated based on the wavelet and
data length using pywt.dwt_max_level().

	axes – The axes of the array that are to be transformed.

	
get_level(level[, order="natural"[, decompose=True]])

	Collects nodes from the given level of decomposition.

	Parameters

	
	level – Specifies decomposition level from which the nodes will
be collected.

	order – Specifies nodes order - natural (natural) or frequency
(freq).

	decompose – If set then the method will try to decompose the data up
to the specified level.

If nodes at the given level are missing (i.e. the tree is partially
decomposed) and the decompose is set to False, only existing nodes
will be returned.

	
reconstruct([update=True])

	Reconstruct data from the subnodes.

	Parameters

	update – A boolean indicating whether the coefficients of the
current node and its subnodes will be replaced with values
from the reconstruction.

WaveletPacketND and NodeND

	
class pywt.NodeND(BaseNode)

	
	
node_name

	
	For WaveletPacketND case it is just as in dwtn():

	
	in 1D it has keys ‘a’ and ‘d’

	in 2D it has keys ‘aa’, ‘ad’, ‘da’, ‘dd’

	in 3D it has keys ‘aaa’, ‘aad’, ‘ada’, ‘daa’, …, ‘ddd’

	
decompose()

	
See also

dwtn() for ND Discrete Wavelet Transform output coefficients.

	
reconstruct()

	
See also

idwtn() for ND Inverse Discrete Wavelet Transform

	
class pywt.WaveletPacketND(NodeND)

	
	
__init__(data, wavelet[, mode='symmetric'[, maxlevel=None[, axes=None]]])

	
	Parameters

	
	data – data associated with the node. N-dimensional numeric array.

	wavelet – Wavelet to use in the transform. This can be a name of the wavelet from the wavelist() list or a Wavelet object instance.

	mode – Signal extension mode for the dwt()
and idwt() decomposition and reconstruction functions.

	maxlevel – Maximum allowed level of decomposition. If not specified
it will be calculated based on the wavelet and
data length using pywt.dwt_max_level().

	axes – The axes of the array that are to be transformed.

	
get_level(level[, decompose=True])

	Collects nodes from the given level of decomposition.

	Parameters

	
	level – Specifies decomposition level from which the nodes will
be collected.

	decompose – If set then the method will try to decompose the data up
to the specified level.

If nodes at the given level are missing (i.e. the tree is partially
decomposed) and the decompose is set to False, only existing nodes
will be returned.

	
reconstruct([update=True])

	Reconstruct data from the subnodes.

	Parameters

	update – A boolean indicating whether the coefficients of the
current node and its subnodes will be replaced with values
from the reconstruction.

Continuous Wavelet Transform (CWT)

This section describes functions used to perform single continuous wavelet
transforms.

Single level - cwt

	
pywt.cwt(data, scales, wavelet)

	One dimensional Continuous Wavelet Transform.

	Parameters

	
	dataarray_like

	Input signal

	scalesarray_like

	The wavelet scales to use. One can use
f = scale2frequency(wavelet, scale)/sampling_period to determine
what physical frequency, f. Here, f is in hertz when the
sampling_period is given in seconds.

	waveletWavelet object or name

	Wavelet to use

	sampling_periodfloat

	Sampling period for the frequencies output (optional).
The values computed for coefs are independent of the choice of
sampling_period (i.e. scales is not scaled by the sampling
period).

	method{‘conv’, ‘fft’}, optional

	
	The method used to compute the CWT. Can be any of:

	
	conv uses numpy.convolve.

	fft uses frequency domain convolution.

	auto uses automatic selection based on an estimate of the
computational complexity at each scale.

The conv method complexity is O(len(scale) * len(data)).
The fft method is O(N * log2(N)) with
N = len(scale) + len(data) - 1. It is well suited for large size
signals but slightly slower than conv on small ones.

	axis: int, optional

	Axis over which to compute the CWT. If not given, the last axis is
used.

	Returns

	
	coefsarray_like

	Continuous wavelet transform of the input signal for the given scales
and wavelet. The first axis of coefs corresponds to the scales.
The remaining axes match the shape of data.

	frequenciesarray_like

	If the unit of sampling period are seconds and given, than frequencies
are in hertz. Otherwise, a sampling period of 1 is assumed.

Notes

Size of coefficients arrays depends on the length of the input array and
the length of given scales.

Examples

>>> import pywt
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.arange(512)
>>> y = np.sin(2*np.pi*x/32)
>>> coef, freqs=pywt.cwt(y,np.arange(1,129),'gaus1')
>>> plt.matshow(coef) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

>>> import pywt
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 200, endpoint=False)
>>> sig = np.cos(2 * np.pi * 7 * t) + np.real(np.exp(-7*(t-0.4)**2)*np.exp(1j*2*np.pi*2*(t-0.4)))
>>> widths = np.arange(1, 31)
>>> cwtmatr, freqs = pywt.cwt(sig, widths, 'mexh')
>>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Continuous Wavelet Families

A variety of continuous wavelets have been implemented. A list of the available
wavelet names compatible with cwt can be obtained by:

wavlist = pywt.wavelist(kind='continuous')

Mexican Hat Wavelet

The mexican hat wavelet "mexh" is given by:

\[\psi(t) = \frac{2}{\sqrt{3} \sqrt[4]{\pi}} \exp^{-\frac{t^2}{2}}
 \left(1 - t^2 \right)\]

where the constant out front is a normalization factor so that the wavelet has
unit energy.

Morlet Wavelet

The Morlet wavelet "morl" is given by:

\[\psi(t) = \exp^{-\frac{t^2}{2}} \cos(5t)\]

Complex Morlet Wavelets

The complex Morlet wavelet ("cmorB-C" with floating point values B, C) is
given by:

\[\psi(t) = \frac{1}{\sqrt{\pi B}} \exp^{-\frac{t^2}{B}}
 \exp^{\mathrm{j} 2\pi C t}\]

where \(B\) is the bandwidth and \(C\) is the center frequency.

Gaussian Derivative Wavelets

The Gaussian wavelets ("gausP" where P is an integer between 1 and and 8)
correspond to the Pth order derivatives of the function:

\[\psi(t) = C \exp^{-t^2}\]

where \(C\) is an order-dependent normalization constant.

Complex Gaussian Derivative Wavelets

The complex Gaussian wavelets ("cgauP" where P is an integer between 1 and
8) correspond to the Pth order derivatives of the function:

\[\psi(t) = C \exp^{-\mathrm{j} t}\exp^{-t^2}\]

where \(C\) is an order-dependent normalization constant.

Shannon Wavelets

The Shannon wavelets ("shanB-C" with floating point values B and C)
correspond to the following wavelets:

\[\psi(t) = \sqrt{B} \frac{\sin(\pi B t)}{\pi B t} \exp^{\mathrm{j}2 \pi C t}\]

where \(B\) is the bandwidth and \(C\) is the center frequency.

Frequency B-Spline Wavelets

The frequency B-spline wavelets ("fpspM-B-C" with integer M and floating
point B, C) correspond to the following wavelets:

\[\psi(t) = \sqrt{B}
 \left[\frac{\sin(\pi B \frac{t}{M})}{\pi B \frac{t}{M}}\right]^M
 \exp^{2\mathrm{j} \pi C t}\]

where \(M\) is the spline order, \(B\) is the bandwidth and \(C\) is
the center frequency.

Choosing the scales for cwt

For each of the wavelets described below, the implementation in PyWavelets
evaluates the wavelet function for \(t\) over the range
[wavelet.lower_bound, wavelet.upper_bound] (with default range
\([-8, 8]\)). scale = 1 corresponds to the case where the extent of the
wavelet is (wavelet.upper_bound - wavelet.lower_bound + 1) samples of the
digital signal being analyzed. Larger scales correspond to stretching of the
wavelet. For example, at scale=10 the wavelet is stretched by a factor of
10, making it sensitive to lower frequencies in the signal.

To relate a given scale to a specific signal frequency, the sampling period
of the signal must be known. pywt.scale2frequency() can be used to
convert a list of scales to their corresponding frequencies. The proper choice
of scales depends on the chosen wavelet, so pywt.scale2frequency() should
be used to get an idea of an appropriate range for the signal of interest.

For the cmor, fbsp and shan wavelets, the user can specify a
specific a normalized center frequency. A value of 1.0 corresponds to 1/dt
where dt is the sampling period. In other words, when analyzing a signal
sampled at 100 Hz, a center frequency of 1.0 corresponds to ~100 Hz at
scale = 1. This is above the Nyquist rate of 50 Hz, so for this
particular wavelet, one would analyze a signal using scales >= 2.

>>> import numpy as np
>>> import pywt
>>> dt = 0.01 # 100 Hz sampling
>>> frequencies = pywt.scale2frequency('cmor1.5-1.0', [1, 2, 3, 4]) / dt
>>> frequencies
array([100. , 50. , 33.33333333, 25.])

The CWT in PyWavelets is applied to discrete data by convolution with samples
of the integral of the wavelet. If scale is too low, this will result in
a discrete filter that is inadequately sampled leading to aliasing as shown
in the example below. Here the wavelet is 'cmor1.5-1.0'. The left column of
the figure shows the discrete filters used in the convolution at various
scales. The right column are the corresponding Fourier power spectra of each
filter.. For scales 1 and 2 it can be seen that aliasing due to violation of
the Nyquist limit occurs.

import numpy as np
import pywt
import matplotlib.pyplot as plt

wav = pywt.ContinuousWavelet('cmor1.5-1.0')

print the range over which the wavelet will be evaluated
print("Continuous wavelet will be evaluated over the range [{}, {}]".format(
 wav.lower_bound, wav.upper_bound))

width = wav.upper_bound - wav.lower_bound

scales = [1, 2, 3, 4, 10, 15]

max_len = int(np.max(scales)*width + 1)
t = np.arange(max_len)
fig, axes = plt.subplots(len(scales), 2, figsize=(12, 6))
for n, scale in enumerate(scales):

 # The following code is adapted from the internals of cwt
 int_psi, x = pywt.integrate_wavelet(wav, precision=10)
 step = x[1] - x[0]
 j = np.floor(
 np.arange(scale * width + 1) / (scale * step))
 if np.max(j) >= np.size(int_psi):
 j = np.delete(j, np.where((j >= np.size(int_psi)))[0])
 j = j.astype(np.int_)

 # normalize int_psi for easier plotting
 int_psi /= np.abs(int_psi).max()

 # discrete samples of the integrated wavelet
 filt = int_psi[j][::-1]

 # The CWT consists of convolution of filt with the signal at this scale
 # Here we plot this discrete convolution kernel at each scale.

 nt = len(filt)
 t = np.linspace(-nt//2, nt//2, nt)
 axes[n, 0].plot(t, filt.real, t, filt.imag)
 axes[n, 0].set_xlim([-max_len//2, max_len//2])
 axes[n, 0].set_ylim([-1, 1])
 axes[n, 0].text(50, 0.35, 'scale = {}'.format(scale))

 f = np.linspace(-np.pi, np.pi, max_len)
 filt_fft = np.fft.fftshift(np.fft.fft(filt, n=max_len))
 filt_fft /= np.abs(filt_fft).max()
 axes[n, 1].plot(f, np.abs(filt_fft)**2)
 axes[n, 1].set_xlim([-np.pi, np.pi])
 axes[n, 1].set_ylim([0, 1])
 axes[n, 1].set_xticks([-np.pi, 0, np.pi])
 axes[n, 1].set_xticklabels([r'$-\pi$', '0', r'π'])
 axes[n, 1].grid(True, axis='x')
 axes[n, 1].text(np.pi/2, 0.5, 'scale = {}'.format(scale))

axes[n, 0].set_xlabel('time (samples)')
axes[n, 1].set_xlabel('frequency (radians)')
axes[0, 0].legend(['real', 'imaginary'], loc='upper left')
axes[0, 1].legend(['Power'], loc='upper left')
axes[0, 0].set_title('filter')
axes[0, 1].set_title(r'|FFT(filter)|2')

[image: ../_images/cwt_scaling_demo.png]

Thresholding functions

The thresholding helper module implements the most popular signal
thresholding functions.

Thresholding

	
pywt.threshold(data, value, mode='soft', substitute=0)

	Thresholds the input data depending on the mode argument.

In soft thresholding [1], data values with absolute value less than
param are replaced with substitute. Data values with absolute value
greater or equal to the thresholding value are shrunk toward zero
by value. In other words, the new value is
data/np.abs(data) * np.maximum(np.abs(data) - value, 0).

In hard thresholding, the data values where their absolute value is
less than the value param are replaced with substitute. Data values with
absolute value greater or equal to the thresholding value stay untouched.

garrote corresponds to the Non-negative garrote threshold [2], [3].
It is intermediate between hard and soft thresholding. It behaves
like soft thresholding for small data values and approaches hard
thresholding for large data values.

In greater thresholding, the data is replaced with substitute where
data is below the thresholding value. Greater data values pass untouched.

In less thresholding, the data is replaced with substitute where data
is above the thresholding value. Lesser data values pass untouched.

Both hard and soft thresholding also support complex-valued data.

	Parameters

	
	dataarray_like

	Numeric data.

	valuescalar

	Thresholding value.

	mode{‘soft’, ‘hard’, ‘garrote’, ‘greater’, ‘less’}

	Decides the type of thresholding to be applied on input data. Default
is ‘soft’.

	substitutefloat, optional

	Substitute value (default: 0).

	Returns

	
	outputarray

	Thresholded array.

See also

	threshold_firm

	

References

	1

	D.L. Donoho and I.M. Johnstone. Ideal Spatial Adaptation via
Wavelet Shrinkage. Biometrika. Vol. 81, No. 3, pp.425-455, 1994.
DOI:10.1093/biomet/81.3.425

	2

	L. Breiman. Better Subset Regression Using the Nonnegative Garrote.
Technometrics, Vol. 37, pp. 373-384, 1995.
DOI:10.2307/1269730

	3

	H-Y. Gao. Wavelet Shrinkage Denoising Using the Non-Negative
Garrote. Journal of Computational and Graphical Statistics Vol. 7,
No. 4, pp.469-488. 1998.
DOI:10.1080/10618600.1998.10474789

Examples

>>> import numpy as np
>>> import pywt
>>> data = np.linspace(1, 4, 7)
>>> data
array([1. , 1.5, 2. , 2.5, 3. , 3.5, 4.])
>>> pywt.threshold(data, 2, 'soft')
array([0. , 0. , 0. , 0.5, 1. , 1.5, 2.])
>>> pywt.threshold(data, 2, 'hard')
array([0. , 0. , 2. , 2.5, 3. , 3.5, 4.])
>>> pywt.threshold(data, 2, 'garrote')
array([0. , 0. , 0. , 0.9 , 1.66666667,
 2.35714286, 3.])
>>> pywt.threshold(data, 2, 'greater')
array([0. , 0. , 2. , 2.5, 3. , 3.5, 4.])
>>> pywt.threshold(data, 2, 'less')
array([1. , 1.5, 2. , 0. , 0. , 0. , 0.])

	
pywt.threshold_firm(data, value_low, value_high)

	Firm threshold.

The approach is intermediate between soft and hard thresholding [1]. It
behaves the same as soft-thresholding for values below value_low and
the same as hard-thresholding for values above thresh_high. For
intermediate values, the thresholded value is in between that corresponding
to soft or hard thresholding.

	Parameters

	
	dataarray-like

	The data to threshold. This can be either real or complex-valued.

	value_lowfloat

	Any values smaller then value_low will be set to zero.

	value_highfloat

	Any values larger than value_high will not be modified.

	Returns

	
	val_newarray-like

	The values after firm thresholding at the specified thresholds.

See also

	threshold

	

Notes

This thresholding technique is also known as semi-soft thresholding [2].

For each value, x, in data. This function computes:

if np.abs(x) <= value_low:
 return 0
elif np.abs(x) > value_high:
 return x
elif value_low < np.abs(x) and np.abs(x) <= value_high:
 return x * value_high * (1 - value_low/x)/(value_high - value_low)

firm is a continuous function (like soft thresholding), but is
unbiased for large values (like hard thresholding).

If value_high == value_low this function becomes hard-thresholding.
If value_high is infinity, this function becomes soft-thresholding.

References

	1

	H.-Y. Gao and A.G. Bruce. Waveshrink with firm shrinkage.
Statistica Sinica, Vol. 7, pp. 855-874, 1997.

	2

	A. Bruce and H-Y. Gao. WaveShrink: Shrinkage Functions and
Thresholds. Proc. SPIE 2569, Wavelet Applications in Signal and
Image Processing III, 1995.
DOI:10.1117/12.217582

The left panel of the figure below illustrates that non-negative Garotte
thresholding is intermediate between soft and hard thresholding. Firm
thresholding transitions between soft and hard thresholding behavior. It
requires a pair of threshold values that define the width of the transition
region.

import numpy as np
import matplotlib.pyplot as plt
import pywt

s = np.linspace(-4, 4, 1000)

s_soft = pywt.threshold(s, value=0.5, mode='soft')
s_hard = pywt.threshold(s, value=0.5, mode='hard')
s_garrote = pywt.threshold(s, value=0.5, mode='garrote')
s_firm1 = pywt.threshold_firm(s, value_low=0.5, value_high=1)
s_firm2 = pywt.threshold_firm(s, value_low=0.5, value_high=2)
s_firm3 = pywt.threshold_firm(s, value_low=0.5, value_high=4)

fig, ax = plt.subplots(1, 2, figsize=(10, 4))
ax[0].plot(s, s_soft)
ax[0].plot(s, s_hard)
ax[0].plot(s, s_garrote)
ax[0].legend(['soft (0.5)', 'hard (0.5)', 'non-neg. garrote (0.5)'])
ax[0].set_xlabel('input value')
ax[0].set_ylabel('thresholded value')

ax[1].plot(s, s_soft)
ax[1].plot(s, s_hard)
ax[1].plot(s, s_firm1)
ax[1].plot(s, s_firm2)
ax[1].plot(s, s_firm3)
ax[1].legend(['soft (0.5)', 'hard (0.5)', 'firm(0.5, 1)', 'firm(0.5, 2)',
 'firm(0.5, 4)'])
ax[1].set_xlabel('input value')
ax[1].set_ylabel('thresholded value')
plt.show()

[image: ../_images/plot_thresholds.png]

Other functions

Integrating wavelet functions

	
pywt.integrate_wavelet(wavelet, precision=8)

	Integrate psi wavelet function from -Inf to x using the rectangle
integration method.

	Parameters

	
	waveletWavelet instance or str

	Wavelet to integrate. If a string, should be the name of a wavelet.

	precisionint, optional

	Precision that will be used for wavelet function
approximation computed with the wavefun(level=precision)
Wavelet’s method (default: 8).

	Returns

	
	[int_psi, x]

	for orthogonal wavelets

	[int_psi_d, int_psi_r, x]

	for other wavelets

Examples

>>> from pywt import Wavelet, integrate_wavelet
>>> wavelet1 = Wavelet('db2')
>>> [int_psi, x] = integrate_wavelet(wavelet1, precision=5)
>>> wavelet2 = Wavelet('bior1.3')
>>> [int_psi_d, int_psi_r, x] = integrate_wavelet(wavelet2, precision=5)

The result of the call depends on the wavelet argument:

	for orthogonal and continuous wavelets - an integral of the
wavelet function specified on an x-grid:

[int_psi, x_grid] = integrate_wavelet(wavelet, precision)

	for other wavelets - integrals of decomposition and
reconstruction wavelet functions and a corresponding x-grid:

[int_psi_d, int_psi_r, x_grid] = integrate_wavelet(wavelet, precision)

Central frequency of psi wavelet function

	
pywt.central_frequency(wavelet, precision=8)

	Computes the central frequency of the psi wavelet function.

	Parameters

	
	waveletWavelet instance, str or tuple

	Wavelet to integrate. If a string, should be the name of a wavelet.

	precisionint, optional

	Precision that will be used for wavelet function
approximation computed with the wavefun(level=precision)
Wavelet’s method (default: 8).

	Returns

	
	scalar

	

	
pywt.scale2frequency(wavelet, scale, precision=8)

	
	Parameters

	
	waveletWavelet instance or str

	Wavelet to integrate. If a string, should be the name of a wavelet.

	scalescalar

	

	precisionint, optional

	Precision that will be used for wavelet function approximation computed
with wavelet.wavefun(level=precision). Default is 8.

	Returns

	
	freqscalar

	

Quadrature Mirror Filter

	
pywt.qmf(filt)

	Returns the Quadrature Mirror Filter(QMF).

The magnitude response of QMF is mirror image about pi/2 of that of the
input filter.

	Parameters

	
	filtarray_like

	Input filter for which QMF needs to be computed.

	Returns

	
	qm_filterndarray

	Quadrature mirror of the input filter.

Orthogonal Filter Banks

	
pywt.orthogonal_filter_bank(scaling_filter)

	Returns the orthogonal filter bank.

The orthogonal filter bank consists of the HPFs and LPFs at
decomposition and reconstruction stage for the input scaling filter.

	Parameters

	
	scaling_filterarray_like

	Input scaling filter (father wavelet).

	Returns

	
	orth_filt_banktuple of 4 ndarrays

	The orthogonal filter bank of the input scaling filter in the order :
1] Decomposition LPF
2] Decomposition HPF
3] Reconstruction LPF
4] Reconstruction HPF

Example Datasets

The following example datasets are available in the module pywt.data:

	name

	description

	ecg

	ECG waveform (1024 samples)

	aero

	grayscale image (512x512)

	ascent

	grayscale image (512x512)

	camera

	grayscale image (512x512)

	nino

	sea surface temperature (264 samples)

	demo_signal

	various synthetic 1d test signals

Each can be loaded via a function of the same name.

	
pywt.data.demo_signal(name='Bumps', n=None)

	Simple 1D wavelet test functions.

This function can generate a number of common 1D test signals used in
papers by David Donoho and colleagues (e.g. [1]) as well as the wavelet
book by Stéphane Mallat [2].

	Parameters

	
	name{‘Blocks’, ‘Bumps’, ‘HeaviSine’, ‘Doppler’, …}

	The type of test signal to generate (name is case-insensitive). If
name is set to ‘list’, a list of the avialable test functions is
returned.

	nint or None

	The length of the test signal. This should be provided for all test
signals except ‘Gabor’ and ‘sineoneoverx’ which have a fixed
length.

	Returns

	
	fnp.ndarray

	Array of length n corresponding to the specified test signal type.

Notes

This function is a partial reimplementation of the MakeSignal function
from the [Wavelab](https://statweb.stanford.edu/~wavelab/) toolbox. These
test signals are provided with permission of Dr. Donoho to encourage
reproducible research.

References

	1

	D.L. Donoho and I.M. Johnstone. Ideal spatial adaptation by
wavelet shrinkage. Biometrika, vol. 81, pp. 425–455, 1994.

	2

	S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way.
Academic Press. 2009.

Example:

>>> import pywt
>>> camera = pywt.data.camera()
>>> doppler = pywt.data.demo_signal('doppler', 1024)
>>> available_signals = pywt.data.demo_signal('list')

Usage examples

The following examples are used as doctest regression tests written using reST
markup. They are included in the documentation since they contain various useful
examples illustrating how to use and how not to use PyWavelets.

For more usage examples see the demo [https://github.com/PyWavelets/pywt/tree/master/demo] directory in the source package.

	The Wavelet object

	Signal Extension Modes

	DWT and IDWT

	Multilevel DWT, IDWT and SWT

	Wavelet Packets

	2D Wavelet Packets

	Gotchas

The Wavelet object

Wavelet families and builtin Wavelets names

Wavelet objects are really a handy carriers of a bunch of DWT-specific
data like quadrature mirror filters and some general properties associated
with them.

At first let’s go through the methods of creating a Wavelet object.
The easiest and the most convenient way is to use builtin named Wavelets.

These wavelets are organized into groups called wavelet families. The most
commonly used families are:

>>> import pywt
>>> pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus', 'mexh', 'morl', 'cgau', 'shan', 'fbsp', 'cmor']

The wavelist() function with family name passed as an argument is used to
obtain the list of wavelet names in each family.

>>> for family in pywt.families():
... print("%s family: " % family + ', '.join(pywt.wavelist(family)))
haar family: haar
db family: db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, db11, db12, db13, db14, db15, db16, db17, db18, db19, db20, db21, db22, db23, db24, db25, db26, db27, db28, db29, db30, db31, db32, db33, db34, db35, db36, db37, db38
sym family: sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, sym11, sym12, sym13, sym14, sym15, sym16, sym17, sym18, sym19, sym20
coif family: coif1, coif2, coif3, coif4, coif5, coif6, coif7, coif8, coif9, coif10, coif11, coif12, coif13, coif14, coif15, coif16, coif17
bior family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8
rbio family: rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8
dmey family: dmey
gaus family: gaus1, gaus2, gaus3, gaus4, gaus5, gaus6, gaus7, gaus8
mexh family: mexh
morl family: morl
cgau family: cgau1, cgau2, cgau3, cgau4, cgau5, cgau6, cgau7, cgau8
shan family: shan
fbsp family: fbsp
cmor family: cmor

To get the full list of builtin wavelets’ names just use the wavelist()
with no argument.

Creating Wavelet objects

Now when we know all the names let’s finally create a Wavelet object:

>>> w = pywt.Wavelet('db3')

So.. that’s it.

Wavelet properties

But what can we do with Wavelet objects? Well, they carry some
interesting information.

First, let’s try printing a Wavelet object. This shows a brief
information about its name, its family name and some properties like
orthogonality and symmetry.

>>> print(w)
Wavelet db3
 Family name: Daubechies
 Short name: db
 Filters length: 6
 Orthogonal: True
 Biorthogonal: True
 Symmetry: asymmetric
 DWT: True
 CWT: False

But the most important information are the wavelet filters coefficients, which
are used in Discrete Wavelet Transform. These coefficients can
be obtained via the dec_lo, Wavelet.dec_hi,
rec_lo and rec_hi attributes, which
corresponds to lowpass and highpass decomposition filters and lowpass and
highpass reconstruction filters respectively:

>>> def print_array(arr):
... print("[%s]" % ", ".join(["%.14f" % x for x in arr]))

Another way to get the filters data is to use the filter_bank
attribute, which returns all four filters in a tuple:

>>> w.filter_bank == (w.dec_lo, w.dec_hi, w.rec_lo, w.rec_hi)
True

Other Wavelet’s properties are:

Wavelet name, short_family_name and family_name:

>>> print(w.name)
db3
>>> print(w.short_family_name)
db
>>> print(w.family_name)
Daubechies

	Decomposition (dec_len) and reconstruction
(rec_len) filter lengths:

>>> int(w.dec_len) # int() is for normalizing longs and ints for doctest
6
>>> int(w.rec_len)
6

	Orthogonality (orthogonal) and biorthogonality (biorthogonal):

>>> w.orthogonal
True
>>> w.biorthogonal
True

	Symmetry (symmetry):

>>> print(w.symmetry)
asymmetric

	Number of vanishing moments for the scaling function phi
(vanishing_moments_phi) and the wavelet function psi
(vanishing_moments_psi) associated with the filters:

>>> w.vanishing_moments_phi
0
>>> w.vanishing_moments_psi
3

Now when we know a bit about the builtin Wavelets, let’s see how to create
custom Wavelets objects. These can be done in two ways:

	Passing the filter bank object that implements the filter_bank
attribute. The attribute must return four filters coefficients.

>>> class MyHaarFilterBank(object):
... @property
... def filter_bank(self):
... from math import sqrt
... return ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])

>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=MyHaarFilterBank())

	Passing the filters coefficients directly as the filter_bank
parameter.

>>> from math import sqrt
>>> my_filter_bank = ([sqrt(2)/2, sqrt(2)/2], [-sqrt(2)/2, sqrt(2)/2],
... [sqrt(2)/2, sqrt(2)/2], [sqrt(2)/2, -sqrt(2)/2])
>>> my_wavelet = pywt.Wavelet('My Haar Wavelet', filter_bank=my_filter_bank)

Note that such custom wavelets will not have all the properties set
to correct values:

>>> print(my_wavelet)
Wavelet My Haar Wavelet
 Family name:
 Short name:
 Filters length: 2
 Orthogonal: False
 Biorthogonal: False
 Symmetry: unknown
 DWT: True
 CWT: False

You can however set a couple of them on your own:

>>> my_wavelet.orthogonal = True
>>> my_wavelet.biorthogonal = True

>>> print(my_wavelet)
Wavelet My Haar Wavelet
 Family name:
 Short name:
 Filters length: 2
 Orthogonal: True
 Biorthogonal: True
 Symmetry: unknown
 DWT: True
 CWT: False

And now… the wavefun!

We all know that the fun with wavelets is in wavelet functions.
Now what would be this package without a tool to compute wavelet
and scaling functions approximations?

This is the purpose of the wavefun() method, which is used to
approximate scaling function (phi) and wavelet function (psi) at the
given level of refinement, based on the filters coefficients.

The number of returned values varies depending on the wavelet’s
orthogonality property. For orthogonal wavelets the result is tuple
with scaling function, wavelet function and xgrid coordinates.

>>> w = pywt.Wavelet('sym3')
>>> w.orthogonal
True
>>> (phi, psi, x) = w.wavefun(level=5)

For biorthogonal (non-orthogonal) wavelets different scaling and wavelet
functions are used for decomposition and reconstruction, and thus five
elements are returned: decomposition scaling and wavelet functions
approximations, reconstruction scaling and wavelet functions approximations,
and the xgrid.

>>> w = pywt.Wavelet('bior1.3')
>>> w.orthogonal
False
>>> (phi_d, psi_d, phi_r, psi_r, x) = w.wavefun(level=5)

See also

You can find live examples of wavefun() usage and
images of all the built-in wavelets on the
Wavelet Properties Browser [http://wavelets.pybytes.com] page.
However, this website is no longer actively maintained and does not
include every wavelet present in PyWavelets. The precision of the wavelet
coefficients at that site is also lower than those included in
PyWavelets.

Signal Extension Modes

Import pywt first

>>> import pywt

>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

List of available signal extension modes:

>>> print(pywt.Modes.modes)
['zero', 'constant', 'symmetric', 'periodic', 'smooth', 'periodization', 'reflect', 'antisymmetric', 'antireflect']

Invalid mode name should rise a ValueError:

>>> pywt.dwt([1,2,3,4], 'db2', 'invalid')
Traceback (most recent call last):
...
ValueError: Unknown mode name 'invalid'.

You can also refer to modes via Modes class attributes:

>>> x = [1, 2, 1, 5, -1, 8, 4, 6]
>>> for mode_name in ['zero', 'constant', 'symmetric', 'reflect', 'periodic', 'smooth', 'periodization']:
... mode = getattr(pywt.Modes, mode_name)
... cA, cD = pywt.dwt(x, 'db2', mode)
... print("Mode: %d (%s)" % (mode, mode_name))
Mode: 0 (zero)
Mode: 2 (constant)
Mode: 1 (symmetric)
Mode: 6 (reflect)
Mode: 4 (periodic)
Mode: 3 (smooth)
Mode: 5 (periodization)

The default mode is symmetric:

>>> cA, cD = pywt.dwt(x, 'db2')
>>> print(cA)
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print(cD)
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print(pywt.idwt(cA, cD, 'db2'))
[1. 2. 1. 5. -1. 8. 4. 6.]

And using a keyword argument:

>>> cA, cD = pywt.dwt(x, 'db2', mode='symmetric')
>>> print(cA)
[1.76776695 1.73309178 3.40612438 6.32928585 7.77817459]
>>> print(cD)
[-0.61237244 -2.15599552 -5.95034847 -1.21545369 1.22474487]
>>> print(pywt.idwt(cA, cD, 'db2'))
[1. 2. 1. 5. -1. 8. 4. 6.]

DWT and IDWT

Discrete Wavelet Transform

Let’s do a Discrete Wavelet Transform of a sample data x
using the db2 wavelet. It’s simple..

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, 'db2')

And the approximation and details coefficients are in cA and cD
respectively:

>>> print(cA)
[5.65685425 7.39923721 0.22414387 3.33677403 7.77817459]
>>> print(cD)
[-2.44948974 -1.60368225 -4.44140056 -0.41361256 1.22474487]

Inverse Discrete Wavelet Transform

Now let’s do an opposite operation
- Inverse Discrete Wavelet Transform:

>>> print(pywt.idwt(cA, cD, 'db2'))
[3. 7. 1. 1. -2. 5. 4. 6.]

Voilà! That’s it!

More Examples

Now let’s experiment with the dwt() some more. For example let’s pass a
Wavelet object instead of the wavelet name and specify signal
extension mode (the default is symmetric) for the
border effect handling:

>>> w = pywt.Wavelet('sym3')
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='constant')
>>> print(cA)
[4.38354585 3.80302657 7.31813271 -0.58565539 4.09727044 7.81994027]
>>> print(cD)
[-1.33068221 -2.78795192 -3.16825651 -0.67715519 -0.09722957 -0.07045258]

Note that the output coefficients arrays length depends not only on the input
data length but also on the :class:Wavelet type (particularly on its
filters length that are used in the transformation).

To find out what will be the output data size use the dwt_coeff_len()
function:

>>> # int() is for normalizing Python integers and long integers for documentation tests
>>> int(pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode='symmetric'))
6
>>> int(pywt.dwt_coeff_len(len(x), w, 'symmetric'))
6
>>> len(cA)
6

Looks fine. (And if you expected that the output length would be a half of the
input data length, well, that’s the trade-off that allows for the perfect
reconstruction…).

The third argument of the dwt_coeff_len() is the already mentioned signal
extension mode (please refer to the PyWavelets’ documentation for the
modes description). Currently there are six
extension modes available:

>>> pywt.Modes.modes
['zero', 'constant', 'symmetric', 'periodic', 'smooth', 'periodization', 'reflect', 'antisymmetric', 'antireflect']

As you see in the above example, the periodization
(periodization) mode is slightly different from the others. It’s aim when
doing the DWT transform is to output coefficients arrays that
are half of the length of the input data.

Knowing that, you should never mix the periodization mode with other modes when
doing DWT and IDWT. Otherwise, it will produce
invalid results:

>>> x
[3, 7, 1, 1, -2, 5, 4, 6]
>>> cA, cD = pywt.dwt(x, wavelet=w, mode='periodization')
>>> print(pywt.idwt(cA, cD, 'sym3', 'symmetric')) # invalid mode
[1. 1. -2. 5.]
>>> print(pywt.idwt(cA, cD, 'sym3', 'periodization'))
[3. 7. 1. 1. -2. 5. 4. 6.]

Tips & tricks

Passing None instead of coefficients data to idwt()

Now some tips & tricks. Passing None as one of the coefficient arrays
parameters is similar to passing a zero-filled array. The results are simply
the same:

>>> print(pywt.idwt([1,2,0,1], None, 'db2', 'symmetric'))
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print(pywt.idwt([1, 2, 0, 1], [0, 0, 0, 0], 'db2', 'symmetric'))
[1.19006969 1.54362308 0.44828774 -0.25881905 0.48296291 0.8365163]

>>> print(pywt.idwt(None, [1, 2, 0, 1], 'db2', 'symmetric'))
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

>>> print(pywt.idwt([0, 0, 0, 0], [1, 2, 0, 1], 'db2', 'symmetric'))
[0.57769726 -0.93125065 1.67303261 -0.96592583 -0.12940952 -0.22414387]

Remember that only one argument at a time can be None:

>>> print(pywt.idwt(None, None, 'db2', 'symmetric'))
Traceback (most recent call last):
...
ValueError: At least one coefficient parameter must be specified.

Coefficients data size in idwt

When doing the IDWT transform, usually the coefficient arrays
must have the same size.

>>> print(pywt.idwt([1, 2, 3, 4, 5], [1, 2, 3, 4], 'db2', 'symmetric'))
Traceback (most recent call last):
...
ValueError: Coefficients arrays must have the same size.

Not every coefficient array can be used in IDWT. In the
following example the idwt() will fail because the input arrays are
invalid - they couldn’t be created as a result of DWT, because
the minimal output length for dwt using db4 wavelet and the symmetric mode is 4, not 3:

>>> pywt.idwt([1,2,4], [4,1,3], 'db4', 'symmetric')
Traceback (most recent call last):
...
ValueError: Invalid coefficient arrays length for specified wavelet. Wavelet and mode must be the same as used for decomposition.

>>> int(pywt.dwt_coeff_len(1, pywt.Wavelet('db4').dec_len, 'symmetric'))
4

Multilevel DWT, IDWT and SWT

Multilevel DWT decomposition

>>> import pywt
>>> x = [3, 7, 1, 1, -2, 5, 4, 6]
>>> db1 = pywt.Wavelet('db1')
>>> cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
>>> print(cA3)
[8.83883476]
>>> print(cD3)
[-0.35355339]
>>> print(cD2)
[4. -3.5]
>>> print(cD1)
[-2.82842712 0. -4.94974747 -1.41421356]

>>> pywt.dwt_max_level(len(x), db1)
3

>>> cA2, cD2, cD1 = pywt.wavedec(x, db1, mode='constant', level=2)

Multilevel IDWT reconstruction

>>> coeffs = pywt.wavedec(x, db1)
>>> print(pywt.waverec(coeffs, db1))
[3. 7. 1. 1. -2. 5. 4. 6.]

Multilevel SWT decomposition

>>> x = [3, 7, 1, 3, -2, 6, 4, 6]
>>> (cA2, cD2), (cA1, cD1) = pywt.swt(x, db1, level=2)
>>> print(cA1)
[7.07106781 5.65685425 2.82842712 0.70710678 2.82842712 7.07106781
 7.07106781 6.36396103]
>>> print(cD1)
[-2.82842712 4.24264069 -1.41421356 3.53553391 -5.65685425 1.41421356
 -1.41421356 2.12132034]
>>> print(cA2)
[7. 4.5 4. 5.5 7. 9.5 10. 8.5]
>>> print(cD2)
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> [(cA2, cD2)] = pywt.swt(cA1, db1, level=1, start_level=1)
>>> print(cA2)
[7. 4.5 4. 5.5 7. 9.5 10. 8.5]
>>> print(cD2)
[3. 3.5 0. -4.5 -3. 0.5 0. 0.5]

>>> coeffs = pywt.swt(x, db1)
>>> len(coeffs)
3
>>> pywt.swt_max_level(len(x))
3

 >>> from __future__ import print_function

Wavelet Packets

Import pywt

>>> import pywt

>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)

Create Wavelet Packet structure

Ok, let’s create a sample WaveletPacket:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

The input data and decomposition coefficients are stored in the
WaveletPacket.data attribute:

>>> print(wp.data)
[1, 2, 3, 4, 5, 6, 7, 8]

Nodes are identified by paths. For the root
node the path is '' and the decomposition level is 0.

>>> print(repr(wp.path))
''
>>> print(wp.level)
0

The maxlevel, if not given as param in the constructor, is automatically
computed:

>>> print(wp['ad'].maxlevel)
3

Traversing WP tree:

Accessing subnodes:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

First check what is the maximum level of decomposition:

>>> print(wp.maxlevel)
3

and try accessing subnodes of the WP tree:

	1st level:

>>> print(wp['a'].data)
[2.12132034 4.94974747 7.77817459 10.60660172]
>>> print(wp['a'].path)
a

	2nd level:

>>> print(wp['aa'].data)
[5. 13.]
>>> print(wp['aa'].path)
aa

	3rd level:

>>> print(wp['aaa'].data)
[12.72792206]
>>> print(wp['aaa'].path)
aaa

Ups, we have reached the maximum level of decomposition and got an
IndexError:

>>> print(wp['aaaa'].data)
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Now try some invalid path:

>>> print(wp['ac'])
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'd'], not 'c'.

which just yielded a ValueError.

Accessing Node’s attributes:

WaveletPacket object is a tree data structure, which evaluates to a set
of Node objects. WaveletPacket is just a special subclass
of the Node class (which in turn inherits from the BaseNode).

Tree nodes can be accessed using the obj[x] (Node.__getitem__())
operator.
Each tree node has a set of attributes: data, path,
node_name, parent, level,
maxlevel and mode.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

>>> print(wp['ad'].data)
[-2. -2.]

>>> print(wp['ad'].path)
ad

>>> print(wp['ad'].node_name)
d

>>> print(wp['ad'].parent.path)
a

>>> print(wp['ad'].level)
2

>>> print(wp['ad'].maxlevel)
3

>>> print(wp['ad'].mode)
symmetric

Collecting nodes

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

We can get all nodes on the particular level either in natural order:

>>> print([node.path for node in wp.get_level(3, 'natural')])
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']

or sorted based on the band frequency (freq):

>>> print([node.path for node in wp.get_level(3, 'freq')])
['aaa', 'aad', 'add', 'ada', 'dda', 'ddd', 'dad', 'daa']

Note that WaveletPacket.get_level() also performs automatic decomposition
until it reaches the specified level.

Reconstructing data from Wavelet Packets:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

Now create a new Wavelet Packet and set its nodes with
some data.

>>> new_wp = pywt.WaveletPacket(data=None, wavelet='db1', mode='symmetric')

>>> new_wp['aa'] = wp['aa'].data
>>> new_wp['ad'] = [-2., -2.]

For convenience, Node.data gets automatically extracted from the
Node object:

>>> new_wp['d'] = wp['d']

And reconstruct the data from the aa, ad and d packets.

>>> print(new_wp.reconstruct(update=False))
[1. 2. 3. 4. 5. 6. 7. 8.]

If the update param in the reconstruct method is set to False, the
node’s data will not be updated.

>>> print(new_wp.data)
None

Otherwise, the data attribute will be set to the reconstructed
value.

>>> print(new_wp.reconstruct(update=True))
[1. 2. 3. 4. 5. 6. 7. 8.]
>>> print(new_wp.data)
[1. 2. 3. 4. 5. 6. 7. 8.]

>>> print([n.path for n in new_wp.get_leaf_nodes(False)])
['aa', 'ad', 'd']

>>> print([n.path for n in new_wp.get_leaf_nodes(True)])
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']

Removing nodes from Wavelet Packet tree:

Let’s create a sample data:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

First, start with a tree decomposition at level 2. Leaf nodes in the tree are:

>>> dummy = wp.get_level(2)
>>> for n in wp.get_leaf_nodes(False):
... print(n.path, format_array(n.data))
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]

>>> node = wp['ad']
>>> print(node)
ad: [-2. -2.]

To remove a node from the WP tree, use Python’s del obj[x]
(Node.__delitem__):

>>> del wp['ad']

The leaf nodes that left in the tree are:

>>> for n in wp.get_leaf_nodes():
... print(n.path, format_array(n.data))
aa [5. 13.]
da [-1. -1.]
dd [0. 0.]

And the reconstruction is:

>>> print(wp.reconstruct())
[2. 3. 2. 3. 6. 7. 6. 7.]

Now restore the deleted node value.

>>> wp['ad'].data = node.data

Printing leaf nodes and tree reconstruction confirms the original state of the
tree:

>>> for n in wp.get_leaf_nodes(False):
... print(n.path, format_array(n.data))
aa [5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [0. 0.]

>>> print(wp.reconstruct())
[1. 2. 3. 4. 5. 6. 7. 8.]

Lazy evaluation:

Note

This section is for demonstration of pywt internals purposes
only. Do not rely on the attribute access to nodes as presented in
this example.

>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')

	At first the wp’s attribute a is None

>>> print(wp.a)
None

Remember that you should not rely on the attribute access.

	At first attempt to access the node it is computed via decomposition
of its parent node (the wp object itself).

>>> print(wp['a'])
a: [2.12132034 4.94974747 7.77817459 10.60660172]

	Now the wp.a is set to the newly created node:

>>> print(wp.a)
a: [2.12132034 4.94974747 7.77817459 10.60660172]

And so is wp.d:

>>> print(wp.d)
d: [-0.70710678 -0.70710678 -0.70710678 -0.70710678]

2D Wavelet Packets

Import pywt

>>> from __future__ import print_function
>>> import pywt
>>> import numpy

Create 2D Wavelet Packet structure

Start with preparing test data:

>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, 'd')
>>> print(x)
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]

Now create a 2D Wavelet Packet object:

>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='symmetric')

The input data and decomposition coefficients are stored in the
WaveletPacket2D.data attribute:

>>> print(wp.data)
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]

Nodes are identified by paths. For the root node the path is
'' and the decomposition level is 0.

>>> print(repr(wp.path))
''
>>> print(wp.level)
0

The WaveletPacket2D.maxlevel, if not given in the constructor, is
automatically computed based on the data size:

>>> print(wp.maxlevel)
3

Traversing WP tree:

Wavelet Packet nodes are arranged in a tree. Each node in a WP
tree is uniquely identified and addressed by a path string.

In the 1D WaveletPacket case nodes were accessed using 'a'
(approximation) and 'd' (details) path names (each node has two 1D
children).

Because now we deal with a bit more complex structure (each node has four
children), we have four basic path names based on the dwt 2D output convention
to address the WP2D structure:

	a - LL, low-low coefficients

	h - LH, low-high coefficients

	v - HL, high-low coefficients

	d - HH, high-high coefficients

In other words, subnode naming corresponds to the dwt2() function output
naming convention (as wavelet packet transform is based on the dwt2 transform):

 | | |
 | cA(LL) | cH(LH) |
 | | |
(cA, (cH, cV, cD)) <---> -------------------
 | | |
 | cV(HL) | cD(HH) |
 | | |

 (fig.1: DWT 2D output and interpretation)

Knowing what the nodes names are, we can now access them using the indexing
operator obj[x] (WaveletPacket2D.__getitem__()):

>>> print(wp['a'].data)
[[3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]]
>>> print(wp['h'].data)
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
>>> print(wp['v'].data)
[[-1. -1. -1. -1.]
 [-1. -1. -1. -1.]
 [-1. -1. -1. -1.]
 [-1. -1. -1. -1.]]
>>> print(wp['d'].data)
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

Similarly, a subnode of a subnode can be accessed by:

>>> print(wp['aa'].data)
[[10. 26.]
 [10. 26.]]

Indexing base WaveletPacket2D (as well as 1D WaveletPacket)
using compound path is just the same as indexing WP subnode:

>>> node = wp['a']
>>> print(node['a'].data)
[[10. 26.]
 [10. 26.]]
>>> print(wp['a']['a'].data is wp['aa'].data)
True

Following down the decomposition path:

>>> print(wp['aaa'].data)
[[36.]]
>>> print(wp['aaaa'].data)
Traceback (most recent call last):
...
IndexError: Path length is out of range.

Ups, we have reached the maximum level of decomposition for the 'aaaa' path,
which btw. was:

>>> print(wp.maxlevel)
3

Now try some invalid path:

>>> print(wp['f'])
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'h', 'v', 'd'], not 'f'.

Accessing Node2D’s attributes:

WaveletPacket2D is a tree data structure, which evaluates to a set
of Node2D objects. WaveletPacket2D is just a special subclass
of the Node2D class (which in turn inherits from a BaseNode,
just like with Node and WaveletPacket for the 1D case.).

>>> print(wp['av'].data)
[[-4. -4.]
 [-4. -4.]]

>>> print(wp['av'].path)
av

>>> print(wp['av'].node_name)
v

>>> print(wp['av'].parent.path)
a

>>> print(wp['av'].parent.data)
[[3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]]

>>> print(wp['av'].level)
2

>>> print(wp['av'].maxlevel)
3

>>> print(wp['av'].mode)
symmetric

Collecting nodes

We can get all nodes on the particular level using the
WaveletPacket2D.get_level() method:

	0 level - the root wp node:

>>> len(wp.get_level(0))
1
>>> print([node.path for node in wp.get_level(0)])
['']

	1st level of decomposition:

>>> len(wp.get_level(1))
4
>>> print([node.path for node in wp.get_level(1)])
['a', 'h', 'v', 'd']

	2nd level of decomposition:

>>> len(wp.get_level(2))
16
>>> paths = [node.path for node in wp.get_level(2)]
>>> for i, path in enumerate(paths):
... if (i+1) % 4 == 0:
... print(path)
... else:
... print(path, end=' ')
aa ah av ad
ha hh hv hd
va vh vv vd
da dh dv dd

	3rd level of decomposition:

>>> print(len(wp.get_level(3)))
64
>>> paths = [node.path for node in wp.get_level(3)]
>>> for i, path in enumerate(paths):
... if (i+1) % 8 == 0:
... print(path)
... else:
... print(path, end=' ')
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd

Note that WaveletPacket2D.get_level() performs automatic decomposition
until it reaches the given level.

Reconstructing data from Wavelet Packets:

Let’s create a new empty 2D Wavelet Packet structure and set its nodes
values with known data from the previous examples:

>>> new_wp = pywt.WaveletPacket2D(data=None, wavelet='db1', mode='symmetric')

>>> new_wp['vh'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vv'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vd'] = [[0.0, 0.0], [0.0, 0.0]]

>>> new_wp['a'] = [[3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
... [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0]]
>>> new_wp['d'] = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
... [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]

For convenience, Node2D.data gets automatically extracted from the
base Node2D object:

>>> new_wp['h'] = wp['h'] # all zeros

Note: just remember to not assign to the node.data parameter directly (todo).

And reconstruct the data from the a, d, vh, vv, vd and h
packets (Note that va node was not set and the WP tree is “not complete”
- the va branch will be treated as zero-array):

>>> print(new_wp.reconstruct(update=False))
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Now set the va node with the known values and do the reconstruction again:

>>> new_wp['va'] = wp['va'].data # [[-2.0, -2.0], [-2.0, -2.0]]
>>> print(new_wp.reconstruct(update=False))
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]

which is just the same as the base sample data x.

Of course we can go the other way and remove nodes from the tree. If we delete
the va node, again, we get the “not complete” tree from one of the previous
examples:

>>> del new_wp['va']
>>> print(new_wp.reconstruct(update=False))
[[1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
 [1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]

Just restore the node before next examples.

>>> new_wp['va'] = wp['va'].data

If the update param in the WaveletPacket2D.reconstruct() method is set
to False, the node’s Node2D.data attribute will not be updated.

>>> print(new_wp.data)
None

Otherwise, the WaveletPacket2D.data attribute will be set to the
reconstructed value.

>>> print(new_wp.reconstruct(update=True))
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]
>>> print(new_wp.data)
[[1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]
 [1. 2. 3. 4. 5. 6. 7. 8.]]

Since we have an interesting WP structure built, it is a good occasion to
present the WaveletPacket2D.get_leaf_nodes() method, which collects
non-zero leaf nodes from the WP tree:

>>> print([n.path for n in new_wp.get_leaf_nodes()])
['a', 'h', 'va', 'vh', 'vv', 'vd', 'd']

Passing the decompose = True parameter to the method will force the WP
object to do a full decomposition up to the maximum level of decomposition:

>>> paths = [n.path for n in new_wp.get_leaf_nodes(decompose=True)]
>>> len(paths)
64
>>> for i, path in enumerate(paths):
... if (i+1) % 8 == 0:
... print(path)
... else:
... try:
... print(path, end=' ')
... except:
... print(path, end=' ')
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd

Lazy evaluation:

Note

This section is for demonstration of pywt internals purposes
only. Do not rely on the attribute access to nodes as presented in
this example.

>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8)
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='symmetric')

	At first the wp’s attribute a is None

>>> print(wp.a)
None

Remember that you should not rely on the attribute access.

	During the first attempt to access the node it is computed
via decomposition of its parent node (the wp object itself).

>>> print(wp['a'])
a: [[3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]]

	Now the a is set to the newly created node:

>>> print(wp.a)
a: [[3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]
 [3. 7. 11. 15.]]

And so is wp.d:

>>> print(wp.d)
d: [[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

Gotchas

PyWavelets utilizes NumPy under the hood. That’s why handling the data
containing None values can be surprising. None values are converted to
‘not a number’ (numpy.NaN) values:

>>> import numpy, pywt
>>> x = [None, None]
>>> mode = 'symmetric'
>>> wavelet = 'db1'
>>> cA, cD = pywt.dwt(x, wavelet, mode)
>>> numpy.all(numpy.isnan(cA))
True
>>> numpy.all(numpy.isnan(cD))
True
>>> rec = pywt.idwt(cA, cD, wavelet, mode)
>>> numpy.all(numpy.isnan(rec))
True

Contributing

All contributions including bug reports, bug fixes, new feature implementations
and documentation improvements are welcome. Moreover, developers with an
interest in PyWavelets are very welcome to join the development team! Please
see our guidelines for pull requests [https://github.com/PyWavelets/pywt/tree/master/CONTRIBUTING.rst] for more information.

Contributors are expected to behave in a productive and respectful manner in
accordance with our community guidelines [https://github.com/PyWavelets/pywt/tree/master/community_guidelines.rst] and PyWavelets Code of Conduct.

History

PyWavelets started in 2006 as an academic project for a masters thesis
on Analysis and Classification of Medical Signals using Wavelet Transforms
and was maintained until 2012 by its original developer [http://en.ig.ma]. In 2013
maintenance was taken over in a new repo [https://github.com/PyWavelets/pywt])
by a larger development team - a move supported by the original developer.
The repo move doesn’t mean that this is a fork - the package continues to be
developed under the name “PyWavelets”, and released on PyPI and Github (see
this issue [https://github.com/nigma/pywt/issues/13] for the discussion
where that was decided).

Development guide

This section contains information on building and installing PyWavelets
from source code as well as instructions for preparing the build environment
on Windows and Linux.

	PyWavelets Code of Conduct
	Introduction

	Specific Guidelines

	Diversity Statement

	Reporting Guidelines

	Incident reporting resolution & Code of Conduct enforcement

	Endnotes

	Preparing Windows build environment
	Installing Windows SDK C/C++ compiler

	MinGW C/C++ compiler

	Next steps

	Preparing Linux build environment
	Installing basic build tools

	Next steps

	Installing build dependencies
	Setting up Python virtual environment

	Installing Cython

	Installing numpy

	Installing Sphinx

	Building and installing PyWavelets
	Installing from source code

	Installing a development version

	Installing a regular release from PyPi

	Testing
	Continous integration with Travis-CI

	Running tests locally

	Running tests with Tox

	Guidelines for Releasing PyWavelets
	Updating the release notes

	Tag the release

	Build Windows, OS X and Linux wheels and upload to PyPI

	Create the source distribution

	Upload the release to PyPI

	Update conda-forge

	Create the release on GitHub

	Announcing the release

	Prepare for continued development

Something not working?

If these instructions are not clear or you need help setting up your
development environment, go ahead and ask on the PyWavelets discussion
group at http://groups.google.com/group/pywavelets or open a ticket on GitHub [https://github.com/PyWavelets/pywt].

PyWavelets Code of Conduct

Introduction

This code of conduct applies to all spaces managed by the PyWavelets project,
including all public and private mailing lists, issue trackers, wikis, blogs,
Twitter, and any other communication channel used by our community. The
PyWavelets project does not organise in-person events, however events related
to our community should have a code of conduct similar in spirit to this one.

This code of conduct should be honored by everyone who participates in
the PyWavelets community formally or informally, or claims any affiliation with
the project, in any project-related activities and especially when representing
the project, in any role.

This code is not exhaustive or complete. It serves to distill our common
understanding of a collaborative, shared environment and goals. Please try to
follow this code in spirit as much as in letter, to create a friendly and
productive environment that enriches the surrounding community.

This code of conduct was adapted from SciPy’s code of conduct without any
substantial modification in terms. We wish to thank the SciPy contributors for
their hard work in authoring these terms and in helping develop a community
consensus them.

Specific Guidelines

We strive to:

	Be open. We invite anyone to participate in our community. We prefer to use
public methods of communication for project-related messages, unless
discussing something sensitive. This applies to messages for help or
project-related support, too; not only is a public support request much more
likely to result in an answer to a question, it also ensures that any
inadvertent mistakes in answering are more easily detected and corrected.

	Be empathetic, welcoming, friendly, and patient. We work together to resolve
conflict, and assume good intentions. We may all experience some frustration
from time to time, but we do not allow frustration to turn into a personal
attack. A community where people feel uncomfortable or threatened is not a
productive one.

	Be collaborative. Our work will be used by other people, and in turn we will
depend on the work of others. When we make something for the benefit of the
project, we are willing to explain to others how it works, so that they can
build on the work to make it even better. Any decision we make will affect
users and colleagues, and we take those consequences seriously when making
decisions.

	Be inquisitive. Nobody knows everything! Asking questions early avoids many
problems later, so we encourage questions, although we may direct them to
the appropriate forum. We will try hard to be responsive and helpful.

	Be careful in the words that we choose. We are careful and respectful in
our communication and we take responsibility for our own speech. Be kind to
others. Do not insult or put down other participants. We will not accept
harassment or other exclusionary behaviour, such as:

	Violent threats or language directed against another person.

	Sexist, racist, or otherwise discriminatory jokes and language.

	Posting sexually explicit or violent material.

	Posting (or threatening to post) other people’s personally identifying information (“doxing”).

	Sharing private content, such as emails sent privately or non-publicly,
or unlogged forums such as IRC channel history, without the sender’s consent.

	Personal insults, especially those using racist or sexist terms.

	Unwelcome sexual attention.

	Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.

	Repeated harassment of others. In general, if someone asks you to stop, then stop.

	Advocating for, or encouraging, any of the above behaviour.

Diversity Statement

The PyWavelets project welcomes and encourages participation by everyone. We
are committed to being a community that everyone enjoys being part of. Although
we may not always be able to accommodate each individual’s preferences, we try
our best to treat everyone kindly.

No matter how you identify yourself or how others perceive you: we welcome you.
Though no list can hope to be comprehensive, we explicitly honour diversity in:
age, culture, ethnicity, genotype, gender identity or expression, language,
national origin, neurotype, phenotype, political beliefs, profession, race,
religion, sexual orientation, socioeconomic status, subculture and technical
ability, to the extent that these do not conflict with this code of conduct.

Though we welcome people fluent in all languages, PyWavelets development is
conducted in English.

Standards for behaviour in the PyWavelets community are detailed in the Code of
Conduct above. Participants in our community should uphold these standards
in all their interactions and help others to do so as well (see next section).

Reporting Guidelines

We know that it is painfully common for internet communication to start at or
devolve into obvious and flagrant abuse. We also recognize that sometimes
people may have a bad day, or be unaware of some of the guidelines in this Code
of Conduct. Please keep this in mind when deciding on how to respond to a
breach of this Code.

For clearly intentional breaches, report those to the Code of Conduct committee
(see below). For possibly unintentional breaches, you may reply to the person
and point out this code of conduct (either in public or in private, whatever is
most appropriate). If you would prefer not to do that, please feel free to
report to the Code of Conduct Committee directly, or ask the Committee for
advice, in confidence.

You can report issues to the PyWavelets Code of Conduct committee, at
PyWavelets-conduct@googlegroups.com. Currently, the committee consists of:

	Gregory Lee

	Ralf Gommers

	Alexandre de Siqueira

If your report involves any members of the committee, or if they feel they have
a conflict of interest in handling it, then they will recuse themselves from
considering your report. Alternatively, if for any reason you feel
uncomfortable making a report to the committee, then you can also contact:

	Chair of the PyWavelets Steering Committee: Gregory Lee

Incident reporting resolution & Code of Conduct enforcement

This section summarizes the most important points, more details can be found
in PyWavelets Code of Conduct - How to follow up on a report.

We will investigate and respond to all complaints. The PyWavelets Code of
Conduct Committee and the PyWavelets Steering Committee (if involved) will
protect the identity of the reporter, and treat the content of complaints as
confidential (unless the reporter agrees otherwise).

In case of severe and obvious breaches, e.g. personal threat or violent, sexist
or racist language, we will immediately disconnect the originator from
PyWavelets communication channels; please see the manual for details.

In cases not involving clear severe and obvious breaches of this code of
conduct, the process for acting on any received code of conduct violation
report will be:

	acknowledge report is received

	reasonable discussion/feedback

	mediation (if feedback didn’t help, and only if both reporter and reportee agree to this)

	enforcement via transparent decision (see Resolutions) by the
Code of Conduct Committee

The committee will respond to any report as soon as possible, and at most
within 72 hours.

Endnotes

We are thankful to the SciPy developers for creating the code of conduct we
have adapated here.

	Scipy Code of Conduct [http://scipy.github.io/devdocs/dev/conduct/code_of_conduct.html]

The SciPy code of conduct was in turn inspired by the following documents:

	The Apache Foundation Code of Conduct [https://www.apache.org/foundation/policies/conduct.html]

	The Contributor Covenant [https://www.contributor-covenant.org/version/1/4/code-of-conduct/]

	Jupyter Code of Conduct [https://github.com/jupyter/governance/tree/master/conduct]

	Open Source Guides - Code of Conduct [https://opensource.guide/code-of-conduct/]

Preparing Windows build environment

To start developing PyWavelets code on Windows you will have to install
a C compiler and prepare the build environment.

Installing Windows SDK C/C++ compiler

Depending on your Python version, a different version of the Microsoft Visual
C++ compiler will be required to build extensions. The same compiler that was
used to build Python itself should be used.

For Python 3.7 or 3.8 it will be MSVC 2015.

The MSVC version should be printed when starting a Python REPL, and can be
checked against the note below:

Note

For reference:

	the MSC v.1500 in the Python version string is Microsoft Visual
C++ 2008 (Microsoft Visual Studio 9.0 with msvcr90.dll runtime)

	MSC v.1600 is MSVC 2010 (10.0 with msvcr100.dll runtime)

	MSC v.1700 is MSVC 2012 (11.0)

	MSC v.1800 is MSVC 2013 (12.0)

	MSC v.1900 is MSVC 2015 (14.0)

Python 3.5.5 (default, Feb 13 2018, 06:15:35) [MSC v.1900 64 bit (AMD64)] on win32

To get started first download, extract and install Microsoft Windows SDK for
Windows 7 and .NET Framework 3.5 SP1 from
http://www.microsoft.com/downloads/en/details.aspx?familyid=71DEB800-C591-4F97-A900-BEA146E4FAE1&displaylang=en.

There are several ISO images on the site, so just grab the one that is suitable
for your platform:

	GRMSDK_EN_DVD.iso for 32-bit x86 platform

	GRMSDKX_EN_DVD.iso for 64-bit AMD64 platform (AMD64 is the codename for
64-bit CPU architecture, not the processor manufacturer)

After installing the SDK and before compiling the extension you have
to configure some environment variables.

For 32-bit build execute the util/setenv_build32.bat script in the cmd
window:

rem Configure the environment for 32-bit builds.
rem Use "vcvars32.bat" for a 32-bit build.
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat"
rem Convince setup.py to use the SDK tools.
set MSSdk=1
setenv /x86 /release
set DISTUTILS_USE_SDK=1

For 64-bit use util/setenv_build64.bat:

rem Configure the environment for 64-bit builds.
rem Use "vcvars32.bat" for a 32-bit build.
"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars64.bat"
rem Convince setup.py to use the SDK tools.
set MSSdk=1
setenv /x64 /release
set DISTUTILS_USE_SDK=1

See also http://wiki.cython.org/64BitCythonExtensionsOnWindows.

MinGW C/C++ compiler

MinGW distribution can be downloaded from
http://sourceforge.net/projects/mingwbuilds/.

In order to change the settings and use MinGW as the default compiler,
edit or create a Distutils configuration file
c:\Python2*\Lib\distutils\distutils.cfg and place the following
entry in it:

[build]
compiler = mingw32

You can also take a look at Cython’s “Installing MinGW on Windows”
page at http://wiki.cython.org/InstallingOnWindows for more info.

Note

Python 2.7/3.2 distutils package is incompatible with the current version
(4.7+) of MinGW (MinGW dropped the -mno-cygwin flag, which is still
passed by distutils).

To use MinGW to compile Python extensions you have to patch the
distutils/cygwinccompiler.py library module and remove every occurrence
of -mno-cygwin.

See http://bugs.python.org/issue12641 bug report for more information
on the issue.

Next steps

After completing these steps continue with
Installing build dependencies.

Preparing Linux build environment

There is a good chance that you already have a working build environment.
Just skip steps that you don’t need to execute.

Installing basic build tools

Note that the example below uses aptitude package manager, which is
specific to Debian and Ubuntu Linux distributions. Use your favourite package
manager to install these packages on your OS.

aptitude install build-essential gcc python-dev git-core

Next steps

After completing these steps continue with
Installing build dependencies.

Installing build dependencies

Setting up Python virtual environment

A good practice is to create a separate Python virtual environment for each
project. If you don’t have virtualenv [http://pypi.python.org/pypi/virtualenv] yet, install and activate it using:

curl -O https://raw.github.com/pypa/virtualenv/master/virtualenv.py
python virtualenv.py <name_of_the_venv>
. <name_of_the_venv>/bin/activate

Installing Cython

Use pip (http://pypi.python.org/pypi/pip) to install Cython [http://cython.org/]:

pip install Cython

Installing numpy

Use pip to install numpy [http://numpy.org/]:

pip install numpy

Numpy can also be obtained via scientific python distributions such as:

	Anaconda [https://www.continuum.io/downloads]

	Enthought Canopy [https://www.enthought.com/products/canopy/]

	Python(x,y) [http://python-xy.github.io/]

Note

You can find binaries for 64-bit Windows on http://www.lfd.uci.edu/~gohlke/pythonlibs/.

Installing Sphinx

Sphinx [http://sphinx.pocoo.org] is a documentation tool that converts reStructuredText files into
nicely looking html documentation. Install it with:

pip install Sphinx

numpydoc [https://github.com/numpy/numpydoc] is used to format the API docmentation appropriately. Install it
via:

pip install numpydoc

Building and installing PyWavelets

Installing from source code

Go to https://github.com/PyWavelets/pywt GitHub project page, fork and clone the
repository or use the upstream repository to get the source code:

git clone https://github.com/PyWavelets/pywt.git PyWavelets

Activate your Python virtual environment, go to the cloned source directory
and type the following commands to build and install the package:

python setup.py build
python setup.py install

To verify the installation run the following command:

python setup.py test

To build docs:

cd doc
make html

Installing a development version

You can also install directly from the source repository:

pip install -e git+https://github.com/PyWavelets/pywt.git#egg=PyWavelets

or:

pip install PyWavelets==dev

Installing a regular release from PyPi

A regular release can be installed with pip or easy_install:

pip install PyWavelets

Testing

Continous integration with Travis-CI

The project is using Travis-CI [https://travis-ci.org/PyWavelets/pywt] service
for continuous integration and testing.

Current build status is:

[image: Build Status]
 [https://secure.travis-ci.org/PyWavelets/pywt]If you are submitting a patch or pull request please make sure it
does not break the build.

Running tests locally

Tests are implemented with pytest [https://pytest.org], so use one of:

$ pytest –pyargs pywt -v

There are also older doctests that can be run by performing the following from
the root of the project source.

$ python pywt/tests/test_doc.py
$ cd doc
$ make doctest

Additionally the examples in the demo subfolder can be checked by running:

$ python util/refguide_check.py

Note: doctests require Matplotlib [https://matplotlib.org] in addition to the usual dependencies.

Running tests with Tox

There’s also a config file for running tests with Tox [https://tox.readthedocs.io/en/latest/] (pip install tox).
To for example run tests for Python 3.7 and 3.8 use:

tox -e py37,py38

For more information see the Tox [https://tox.readthedocs.io/en/latest/] documentation.

Guidelines for Releasing PyWavelets

The following are guidelines for preparing a release of PyWavelets. The
notation vX.X.X in the commands below would be replaced by the actual release
number.

Updating the release notes

Prior to the release, make sure the release notes are up to date. The author
lists can be generated via:

python ./util/authors.py vP.P.P..

where vP.P.P is the previous release number.

The lists of issues closed and PRs merged can be generated via
(script requires Python 2.X to run):

python ./util/gh_lists.py vX.X.X

Tag the release

Change ISRELEASED to True in setup.py and commit.

Tag the release via:

git tag -s vX.X.X

Then push the vX.X.X tag to the PyWavelets GitHub repo.

Build Windows, OS X and Linux wheels and upload to PyPI

Pushing the vX.X.X tag to the repository will kick off automated build and
deployment of the wheels to PyPI. The wheel builds proceed via GitHub Actions
and their status can be checked by going to the Actions tab on GitHub.

In the event that the automated deployment fails, the built wheels can be
downloaded via the GitHub Actions artifacts and then uploaded manually using
twine as described below.

Create the source distribution

The automated wheel build process should also automatically upload the sdist
to PyPI. In the event that automated upload of the sdist fails, please proceed
in generating and uploading it manually as described in this section.

Remove untracked files and directories with git clean.
Warning: this will delete files & directories that are not under version
control so you may want to do a dry run first by adding -n, so you can see what
will be removed:

git clean -xfdn

Then run without -n:

git clean -xfd

Create the source distribution files via:

python setup.py sdist --formats=gztar,zip

Upload the release to PyPI

These instructions cover how to upload wheels and source distributions to PyPI
in the event that the automated deployment fails. The binary Windows wheels downloaded from GitHub Actions (see above) should also be placed into the
/dist subfolder along with the sdist archives.

The wheels and source distributions created above can all be securely uploaded
to pypi.python.org using twine:

twine upload -s dist/*

Note that the documentation on ReadTheDocs (http://pywavelets.readthedocs.org)
will have been automatically generated, so no actions need to be taken for
documentation.

Update conda-forge

The is an autotick bot run by conda-forge that is likely to autodetect the new
PyPI release and autogenerate a PR for you that will update the PyWavelets
feedstock for conda-forge. If this automated PR does not appear, you will need
to send a PR with the new version number and sha256 hash of the source
release to https://github.com/conda-forge/pywavelets-feedstock.

Create the release on GitHub

On the project’s GitHub page, click the releases tab and then press the
“Draft a new release” button to create a release from the appropriate tag.

Announcing the release

Send release announcements to:

	pywavelets@googlegroups.com

	python-announce-list@python.org

	scipy-user@python.org

Prepare for continued development

Increment the version number in setup.py and change ISRELEASED to False.

Prepare new release note files for the upcoming release:

git add doc/release/X.X.X-notes.rst
git add doc/source/release.X.X.X.rst

And add release.X.X.X to the list in doc/source/releasenotes.rst

Release Notes

	PyWavelets 0.3.0 Release Notes

	PyWavelets 0.4.0 Release Notes

	PyWavelets 0.5.0 Release Notes

	PyWavelets 0.5.1 Release Notes

	PyWavelets 0.5.2 Release Notes

	PyWavelets 1.0.0 Release Notes

	PyWavelets 1.0.1 Release Notes

	PyWavelets 1.0.2 Release Notes

	PyWavelets 1.0.3 Release Notes

	PyWavelets 1.1.0 Release Notes

	PyWavelets 1.1.1 Release Notes

	PyWavelets 1.2.0 Release Notes

PyWavelets 0.3.0 Release Notes

Contents

	PyWavelets 0.3.0 Release Notes

	New features

	Test suite

	n-D Inverse Discrete Wavelet Transform

	Thresholding

	Backwards incompatible changes

	Other changes

	Authors

	Issues closed for v0.3.0

	Pull requests for v0.3.0

PyWavelets 0.3.0 is the first release of the package in 3 years. It is the
result of a significant effort of a growing development team to modernize the
package, to provide Python 3.x support and to make a start with providing new
features as well as improved performance. A 0.4.0 release will follow
shortly, and will contain more significant new features as well as
changes/deprecations to streamline the API.

This release requires Python 2.6, 2.7 or 3.3-3.5 and NumPy 1.6.2 or greater.

Highlights of this release include:

	Support for Python 3.x (>=3.3)

	Added a test suite (based on nose, coverage up to 61% so far)

	Maintenance work: C style complying to the Numpy style guide, improved
templating system, more complete docstrings, pep8/pyflakes compliance, and
more.

New features

Test suite

The test suite can be run with nosetests pywt or with:

>>> import pywt
>>> pywt.test()

n-D Inverse Discrete Wavelet Transform

The function pywt.idwtn, which provides n-dimensional inverse DWT, has been
added. It complements idwt, idwt2 and dwtn.

Thresholding

The function pywt.threshold has been added. It unifies the four thresholding
functions that are still provided in the pywt.thresholding namespace.

Backwards incompatible changes

None in this release.

Other changes

Development has moved to a new repo [https://github.com/PyWavelets/pywt].
Everyone with an interest in wavelets is welcome to contribute!

Building wheels, building with python setup.py develop and many other
standard ways to build and install PyWavelets are supported now.

Authors

	Ankit Agrawal +

	François Boulogne +

	Ralf Gommers +

	David Menéndez Hurtado +

	Gregory R. Lee +

	David McInnis +

	Helder Oliveira +

	Filip Wasilewski

	Kai Wohlfahrt +

A total of 9 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v0.3.0

	#3 [https://github.com/PyWavelets/pywt/issues/3]: Remove numerix compat layer

	#4 [https://github.com/PyWavelets/pywt/issues/4]: Add single code base Python 3 support

	#5 [https://github.com/PyWavelets/pywt/issues/5]: PEP8 issues

	#6 [https://github.com/PyWavelets/pywt/issues/6]: Migrate tests to nose

	#7 [https://github.com/PyWavelets/pywt/issues/7]: Expand test coverage without Matlab to a reasonable level

	#8 [https://github.com/PyWavelets/pywt/issues/8]: Replace custom C templates by Numpy’s templating system

	#9 [https://github.com/PyWavelets/pywt/issues/9]: Replace Cython templates by fused types

	#10 [https://github.com/PyWavelets/pywt/issues/10]: Replace use of __array_interface__ with Cython’s memoryviews

	#11 [https://github.com/PyWavelets/pywt/issues/11]: Format existing docstrings in numpydoc format.

	#12 [https://github.com/PyWavelets/pywt/issues/12]: Complete docstrings, they’re quite sparse right now

	#13 [https://github.com/PyWavelets/pywt/issues/13]: Reorganize source tree

	#24 [https://github.com/PyWavelets/pywt/issues/24]: doc/source/regression should be moved

	#27 [https://github.com/PyWavelets/pywt/issues/27]: Broken test: test_swt_decomposition

	#28 [https://github.com/PyWavelets/pywt/issues/28]: Install issue, no module tools.six

	#29 [https://github.com/PyWavelets/pywt/issues/29]: wp.update fails after removal of nodes

	#32 [https://github.com/PyWavelets/pywt/issues/32]: wp.update fails on 2D

	#34 [https://github.com/PyWavelets/pywt/issues/34]: Wavelet string attributes shouldn’t be bytes in Python 3

	#35 [https://github.com/PyWavelets/pywt/issues/35]: Re-enable float32 support

	#36 [https://github.com/PyWavelets/pywt/issues/36]: wavelet instance vs string

	#40 [https://github.com/PyWavelets/pywt/issues/40]: Test with Numpy 1.8rc1

	#45 [https://github.com/PyWavelets/pywt/issues/45]: demos should be updated and integrated in docs

	#60 [https://github.com/PyWavelets/pywt/issues/60]: Moving pywt forward faster

	#61 [https://github.com/PyWavelets/pywt/issues/61]: issues to address in moving towards 0.3.0

	#71 [https://github.com/PyWavelets/pywt/issues/71]: BUG: _pywt.downcoef always returns level=1 result

Pull requests for v0.3.0

	#1 [https://github.com/PyWavelets/pywt/pull/1]: travis: check all branches + fix URL

	#17 [https://github.com/PyWavelets/pywt/pull/17]: [DOC] doctrings for multilevel functions

	#18 [https://github.com/PyWavelets/pywt/pull/18]: DOC: format -> functions.py

	#20 [https://github.com/PyWavelets/pywt/pull/20]: MAINT: remove unnecessary zero() copy()

	#21 [https://github.com/PyWavelets/pywt/pull/21]: Doc wavelet_packets

	#22 [https://github.com/PyWavelets/pywt/pull/22]: Minor doc fixes

	#25 [https://github.com/PyWavelets/pywt/pull/25]: TEST: remove useless functions and use numpy instead

	#26 [https://github.com/PyWavelets/pywt/pull/26]: Merge most recent work

	#30 [https://github.com/PyWavelets/pywt/pull/30]: Adding test for wp.rst

	#41 [https://github.com/PyWavelets/pywt/pull/41]: Change to Numpy templating system

	#43 [https://github.com/PyWavelets/pywt/pull/43]: MAINT: update six.py to not use lazy loading.

	#49 [https://github.com/PyWavelets/pywt/pull/49]: Taking on API Issues

	#50 [https://github.com/PyWavelets/pywt/pull/50]: Add idwtn

	#53 [https://github.com/PyWavelets/pywt/pull/53]: readme updated with info related to Py3 version

	#63 [https://github.com/PyWavelets/pywt/pull/63]: Remove six

	#65 [https://github.com/PyWavelets/pywt/pull/65]: Thresholding

	#70 [https://github.com/PyWavelets/pywt/pull/70]: MAINT: PEP8 fixes

	#72 [https://github.com/PyWavelets/pywt/pull/72]: BUG: fix _downcoef for level > 1

	#73 [https://github.com/PyWavelets/pywt/pull/73]: MAINT: documentation and metadata update for repo fork

	#74 [https://github.com/PyWavelets/pywt/pull/74]: STY: fix pep8/pyflakes issues

	#77 [https://github.com/PyWavelets/pywt/pull/77]: MAINT: raise ValueError if data given to dwt or idwt is not 1D…

PyWavelets 0.4.0 Release Notes

Contents

	PyWavelets 0.4.0 Release Notes

	New features

	1D and 2D inverse stationary wavelet transforms

	Faster 2D and nD wavelet transforms

	Complex floating point support

	nD implementation of the multilevel DWT and IDWT

	Wavelet transforms can be applied along a specific axis/axes

	Example Datasets

	Deprecated features

	Backwards incompatible changes

	Bugs Fixed

	Other changes

	Authors

	Issues closed for v0.4.0

	Pull requests for v0.4.0

PyWavelets 0.4.0 is the culmination of 6 months of work. In addition to
several new features, some changes and deprecations have been made to streamline
the API.

This release requires Python 2.6, 2.7 or 3.3-3.5 and NumPy 1.6.2 or greater.

Highlights of this release include:

	1D and 2D inverse stationary wavelet transforms

	Substantially faster 2D and nD discrete wavelet transforms

	Complex number support

	nD versions of the multilevel DWT and IDWT

New features

1D and 2D inverse stationary wavelet transforms

1D (iswt) and 2D (iswt2) inverse stationary wavelet transforms were
added. These currently only support even length inputs.

Faster 2D and nD wavelet transforms

The multidimensional DWT and IDWT code was refactored and is now an order of
magnitude faster than in previous releases. The following functions benefit:
dwt2, idwt2, dwtn, idwtn.

Complex floating point support

64 and 128-bit complex data types are now supported by all wavelet transforms.

nD implementation of the multilevel DWT and IDWT

The existing 1D and 2D multilevel transforms were supplemented with an nD
implementation.

Wavelet transforms can be applied along a specific axis/axes

All wavelet transform functions now support explicit specification of the axis
or axes upon which to perform the transform.

Example Datasets

Two additional 2D grayscale images were added (camera, ascent). The
previously existing 1D ECG data (ecg) and the 2D aerial image (aero)
used in the demos can also now be imported via functions defined in
pywt.data (e.g. camera = pywt.data.camera())

Deprecated features

A number of functions have been renamed, the old names are deprecated and will
be removed in a future release:

	intwave, renamed to integrate_wavelet

	centrfrq, renamed to central_frequency

	scal2frq, renamed to scale2frequency

	orthfilt, renamed to orthogonal_filter_bank

Integration of general signals (i.e. not wavelets) with integrate_wavelet
is deprecated.

The MODES object and its attributes are deprecated. The new name is
Modes, and the attribute names are expanded:

	zpd, renamed to zero

	cpd, renamed to constant

	sp1, renamed to smooth

	sym, renamed to symmetric

	ppd, renamed to periodic

	per, renamed to periodization

Backwards incompatible changes

idwt no longer takes a correct_size parameter. As a consequence,
idwt2 inputs must match exactly in length. For multilevel transforms, where
arrays differing in size by one element may be produced, use the waverec
functions from the multilevel module instead.

Bugs Fixed

float32 inputs were not always respected. All transforms now return float32
outputs when called using float32 inputs.

Incorrect detail coefficients were returned by downcoef when level > 1.

Other changes

Much of the API documentation is now autogenerated from the corresponding
function docstrings. The numpydoc sphinx extension is now needed to build the
documentation.

Authors

	Thomas Arildsen +

	François Boulogne

	Ralf Gommers

	Gregory R. Lee

	Michael Marino +

	Aaron O’Leary +

	Daniele Tricoli +

	Kai Wohlfahrt

A total of 8 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v0.4.0

	#46 [https://github.com/PyWavelets/pywt/issues/46]: Independent test comparison

	#95 [https://github.com/PyWavelets/pywt/issues/95]: Simplify Matlab tests

	#97 [https://github.com/PyWavelets/pywt/issues/97]: BUG: erroneous detail coefficients returned by downcoef with…

	#140 [https://github.com/PyWavelets/pywt/issues/140]: demo/dwt_signal_decomposition.py : TypeError: object of type…

	#141 [https://github.com/PyWavelets/pywt/issues/141]: Documentation needs update: ImportError: cannot import name ‘multilevel’

Pull requests for v0.4.0

	#55 [https://github.com/PyWavelets/pywt/pull/55]: [RFC] Api changes

	#59 [https://github.com/PyWavelets/pywt/pull/59]: Refactor convolution.c.src

	#64 [https://github.com/PyWavelets/pywt/pull/64]: MAINT: make LH, HL variable names in idwt2 consistent with dwt2

	#67 [https://github.com/PyWavelets/pywt/pull/67]: ENH: add wavedecn and waverecn functions

	#68 [https://github.com/PyWavelets/pywt/pull/68]: ENH: Faster dwtn and idwtn

	#88 [https://github.com/PyWavelets/pywt/pull/88]: DOC minor edit about possible naming

	#93 [https://github.com/PyWavelets/pywt/pull/93]: Added implementation of iswt and iswt2

	#98 [https://github.com/PyWavelets/pywt/pull/98]: fix downcoef detail coefficients for level > 1

	#99 [https://github.com/PyWavelets/pywt/pull/99]: complex support in all dwt and idwt related functions

	#100 [https://github.com/PyWavelets/pywt/pull/100]: replace mlabwrap with python-matlab-bridge in Matlab tests

	#102 [https://github.com/PyWavelets/pywt/pull/102]: Replace some .src expansion with macros

	#104 [https://github.com/PyWavelets/pywt/pull/104]: Faster idwtn/dwtn

	#106 [https://github.com/PyWavelets/pywt/pull/106]: make sure transforms respect float32 dtype

	#109 [https://github.com/PyWavelets/pywt/pull/109]: DOC: fix broken link in sidebar for html docs.

	#112 [https://github.com/PyWavelets/pywt/pull/112]: Complex fix

	#113 [https://github.com/PyWavelets/pywt/pull/113]: TST: don’t build .exe installers on Appveyor anymore, only wheels.

	#116 [https://github.com/PyWavelets/pywt/pull/116]: [RFC] ENH: Add axis argument to dwt

	#117 [https://github.com/PyWavelets/pywt/pull/117]: MAINT: remove deprecated for loop syntax from Cython code

	#121 [https://github.com/PyWavelets/pywt/pull/121]: Fix typo

	#123 [https://github.com/PyWavelets/pywt/pull/123]: MAINT: remove some unused imports

	#124 [https://github.com/PyWavelets/pywt/pull/124]: switch travis from python 3.5-dev to 3.5

	#130 [https://github.com/PyWavelets/pywt/pull/130]: Add axis argument to multidim

	#138 [https://github.com/PyWavelets/pywt/pull/138]: WIP: Documentation updates for v0.4.0

	#139 [https://github.com/PyWavelets/pywt/pull/139]: Autogenerate function API docs

	#142 [https://github.com/PyWavelets/pywt/pull/142]: fix broken docstring examples in _multilevel.py

	#143 [https://github.com/PyWavelets/pywt/pull/143]: handle None properly in waverec

	#144 [https://github.com/PyWavelets/pywt/pull/144]: Add importable images

	#145 [https://github.com/PyWavelets/pywt/pull/145]: DOC: Document MSVC versions

PyWavelets 0.5.0 Release Notes

Contents

	PyWavelets 0.5.0 Release Notes

	New features

	1D Continous Wavelet Transforms

	New discrete wavelets

	New extension mode: reflect

	Multilevel DWT Coefficient Handling

	More C function calls release the GIL

	Multilevel wavelet transforms along specific axes

	Faster multilevel stationary wavelet transforms

	Deprecated features

	Backwards incompatible changes

	Bugs Fixed

	Other changes

	Authors

	Issues closed for v0.5.0

	Pull requests for v0.5.0

PyWavelets is a Python toolbox implementing both discrete and continuous
wavelet transforms (mathematical time-frequency transforms) with a wide range
of built-in wavelets. C/Cython are used for the low-level routines, enabling
high performance. Key Features of PyWavelets are:

	1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

	1D, 2D and nD Multilevel DWT and IDWT

	1D and 2D Forward and Inverse Stationary Wavelet Transform

	1D and 2D Wavelet Packet decomposition and reconstruction

	1D Continuous Wavelet Transform

	When multiple valid implementations are available, we have chosen to maintain consistency with MATLAB™’s Wavelet Toolbox.

PyWavelets 0.5.0 is the culmination of 1 year of work. In addition to
several new features, substantial refactoring of the underlying C and Cython
code have been made.

This release requires Python 2.6, 2.7 or 3.3-3.5 and NumPy 1.9.1 or greater.
This will be the final release supporting Python 2.6 and 3.3.

Highlights of this release include:

	1D continuous wavelet transforms

	new discrete wavelets added (additional Debauchies and Coiflet wavelets)

	new ‘reflect’ extension mode for discrete wavelet transforms

	faster performance for multilevel forward stationary wavelet transforms (SWT)

	n-dimensional support added to forward SWT

	routines to convert multilevel DWT coefficients to and from a single array

	axis support for multilevel DWT

	substantial refactoring/reorganization of the underlying C and Cython code

New features

1D Continous Wavelet Transforms

A wide range of continous wavelets are now available. These include the
following:

	Gaussian wavelets (gaus1…``gaus8``)

	Mexican hat wavelet (mexh)

	Morlet wavelet (morl)

	Complex Gaussian wavelets (cgau1…``cgau8``)

	Shannon wavelet (shan)

	Frequency B-Spline wavelet (fbsp)

	Complex Morlet wavelet (cmor)

Also, see the new CWT-related demo: demo/cwt_analysis.py

New discrete wavelets

Additional Debauchies wavelets (db20…``db38``) and Coiflets
(coif6…``coif17``) have been added.

New extension mode: reflect

Discrete wavelet transforms support a new extension mode, reflect. This
mode pads an array symmetrically, but without repeating the edge value. As an
example:

 pad array pad
4 3 2 | 1 2 3 4 5 | 4 3 2

This differs from symmetric, which repeats the values at the boundaries:

 pad array pad
3 2 1 | 1 2 3 4 5 | 5 4 3

Multilevel DWT Coefficient Handling

New routines to convert the coefficients returned by multilevel DWT routines
to and from a single n-dimensional array have been added.
pywt.coeffs_to_array concatenates the output of wavedec, wavedec2
or wavedecn into a single numpy array. pywt.array_to_coeffs can be
used to transform back from a single coefficient array to a format appropriate
for waverec, waverec2 or waverecn.

More C function calls release the GIL

Cython code calling the wavelet filtering routines (DWT and SWT) now releases
the global interpreter lock (GIL) where possible. A potential use case is in
speeding up the batch computation of several large DWTs using multi-threading
(e.g. via concurrent.futures).

Multilevel wavelet transforms along specific axes

The axis specific transform support introduced in the prior release was
extended to the multilevel DWT transforms. All wavedec* and waverec*
routines have a new axis (1D) or axes (2D, nD) keyword argument. If
unspecified the default behaviour is to transform all axes of the input.

Faster multilevel stationary wavelet transforms

Stationary wavelet transforms are now faster when the number of levels is
greater than one. The improvement can be very large (multiple orders of
magnitude) for transforms with a large number of levels.

Deprecated features

Backwards incompatible changes

A FutureWarning was added to swt2 and iswt2 to warn about a pending
backwards incompatible change to the order of the coefficients in the list
returned by these routines. The actual change will not occur until the next
release. Transform coefficients will be returned in descending rather than
ascending order. This change is being made for consistency with all other
existing multi-level transforms in PyWavelets.

Bugs Fixed

demo/image_blender.py was updated to support the new api of Pillow 3.x

A bug related to size of assumed size_t on some platforms/compilers
(e.g. Windows with mingw64) was fixed.

Fix to memory leak in (i)dwt_axis

Fix to a performance regression in idwt and iswt that was introduced
in v0.4.0.

Fixed a bug in dwtn and idwtn for data with complex dtype when
axes != None.

Other changes

The minimum supported numpy version has been increased to 1.9.1.

Test coverage (including for the Cython and C code) via
Codecov [https://codecov.io/] was added and the overall test coverage has
been improved.

A substantial overhaul of the C extension code has been performed. Custom
templating is no longer used. The intention is to make this code easier to
maintain and expand in the future.

The Cython code has been split out into a multiple files to hopefully make
relevant portions of the wrappers easier to find for future developers.

setup.py now relies on setuptools in all cases (rather than distutils).

Authors

	Jonathan Dan +

	Ralf Gommers

	David Menéndez Hurtado

	Gregory R. Lee

	Holger Nahrstaedt +

	Daniel M. Pelt +

	Alexandre Saint +

	Scott Sievert +

	Kai Wohlfahrt

	Frank Yu +

A total of 10 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v0.5.0

	#48 [https://github.com/PyWavelets/pywt/issues/48]: Continous wavelet transform?

	#127 [https://github.com/PyWavelets/pywt/issues/127]: Reorganize _pywt

	#160 [https://github.com/PyWavelets/pywt/issues/160]: Appveyor failing on recent PRs

	#163 [https://github.com/PyWavelets/pywt/issues/163]: Set up coveralls

	#166 [https://github.com/PyWavelets/pywt/issues/166]: Wavelet coefficients to single array (and vice versa?)

	#177 [https://github.com/PyWavelets/pywt/issues/177]: Fail to install pywt due to the use of index_t which conflict with the defination in /usr/include/sys/types.h on smartos sysmte(open solaris like system)

	#180 [https://github.com/PyWavelets/pywt/issues/180]: Memory leak

	#187 [https://github.com/PyWavelets/pywt/issues/187]: ‘reflect’ signal extension mode

	#189 [https://github.com/PyWavelets/pywt/issues/189]: bump minimum numpy version?

	#191 [https://github.com/PyWavelets/pywt/issues/191]: Upgrade removed Pillow methods

	#196 [https://github.com/PyWavelets/pywt/issues/196]: building in-place for development.

	#200 [https://github.com/PyWavelets/pywt/issues/200]: swt implementation is considerably slower than MATLAB

	#209 [https://github.com/PyWavelets/pywt/issues/209]: broken doctests

	#210 [https://github.com/PyWavelets/pywt/issues/210]: Run doctests in CI setup

	#211 [https://github.com/PyWavelets/pywt/issues/211]: Typo in iswt documentation

	#217 [https://github.com/PyWavelets/pywt/issues/217]: blank_discrete_wavelet does not properly intiailize some properties

	#231 [https://github.com/PyWavelets/pywt/issues/231]: I can’t compile pywt

Pull requests for v0.5.0

	#148 [https://github.com/PyWavelets/pywt/pull/148]: Reorganize C v2

	#161 [https://github.com/PyWavelets/pywt/pull/161]: Remove numpy distutils

	#162 [https://github.com/PyWavelets/pywt/pull/162]: fix: iswt/idwt performance regression

	#164 [https://github.com/PyWavelets/pywt/pull/164]: Improved coefficients for db and coif

	#167 [https://github.com/PyWavelets/pywt/pull/167]: Add coverage (codecov.io)

	#168 [https://github.com/PyWavelets/pywt/pull/168]: convert transform coefficients to and from a single n-dimensional array

	#169 [https://github.com/PyWavelets/pywt/pull/169]: Remove templating

	#170 [https://github.com/PyWavelets/pywt/pull/170]: :Always install new pip on Appveyor

	#172 [https://github.com/PyWavelets/pywt/pull/172]: Adding of missing wavelets from the matlab list

	#178 [https://github.com/PyWavelets/pywt/pull/178]: use Index_t instead of index_t

	#179 [https://github.com/PyWavelets/pywt/pull/179]: add axis/axes support to multilevel discrete wavelet transforms

	#181 [https://github.com/PyWavelets/pywt/pull/181]: Fix memory leak

	#182 [https://github.com/PyWavelets/pywt/pull/182]: improve test coverage for _multidim.py and _multilevel.py

	#183 [https://github.com/PyWavelets/pywt/pull/183]: improve coverage for _dwt.py

	#184 [https://github.com/PyWavelets/pywt/pull/184]: fix corner case in coeffs_to_array

	#188 [https://github.com/PyWavelets/pywt/pull/188]: Drop GIL in c_wt calls

	#190 [https://github.com/PyWavelets/pywt/pull/190]: bump minimum numpy to 1.9

	#192 [https://github.com/PyWavelets/pywt/pull/192]: Upgrade to Pillow>=3 api

	#193 [https://github.com/PyWavelets/pywt/pull/193]: ENH: add ‘reflect’ extension mode

	#197 [https://github.com/PyWavelets/pywt/pull/197]: BLD: fix “python setup.py develop”. Closes gh-196

	#198 [https://github.com/PyWavelets/pywt/pull/198]: Choose clz* based on SIZE_MAX

	#201 [https://github.com/PyWavelets/pywt/pull/201]: speedup multi-level swt

	#205 [https://github.com/PyWavelets/pywt/pull/205]: fix dwtn/idwtn with axes != None and complex data

	#206 [https://github.com/PyWavelets/pywt/pull/206]: DOC: correct typo in iswt docstring

	#207 [https://github.com/PyWavelets/pywt/pull/207]: minor documentation updates

	#208 [https://github.com/PyWavelets/pywt/pull/208]: document coeff_to_array and array_to_coeff

	#214 [https://github.com/PyWavelets/pywt/pull/214]: FIX: update several doctests to reflect the new wavelets added

	#218 [https://github.com/PyWavelets/pywt/pull/218]: FIX: initialize all properties of a blank discrete wavelet

	#219 [https://github.com/PyWavelets/pywt/pull/219]: document coordinate conventions for 2D DWT routines.

	#220 [https://github.com/PyWavelets/pywt/pull/220]: Run doctests on TravisCI

	#221 [https://github.com/PyWavelets/pywt/pull/221]: Documentation for cwt and ContinuousWavelet

	#222 [https://github.com/PyWavelets/pywt/pull/222]: consistent use of double backticks in docs

	#223 [https://github.com/PyWavelets/pywt/pull/223]: add FutureWarning about swt2 coefficient order

	#224 [https://github.com/PyWavelets/pywt/pull/224]: n-dimensional stationary wavelet transform (swtn) and axis support in swt, swt2

	#225 [https://github.com/PyWavelets/pywt/pull/225]: BUG: fix breakage on 32-bit Python.

	#226 [https://github.com/PyWavelets/pywt/pull/226]: DOC: update Copyright statements.

	#227 [https://github.com/PyWavelets/pywt/pull/227]: ENH: add kind keyword to wavelist()

	#228 [https://github.com/PyWavelets/pywt/pull/228]: MAINT: avoid using a builtin as variable name in qmf().

	#229 [https://github.com/PyWavelets/pywt/pull/229]: DOC: add swtn, iswt, iswt2 to the API documentation

	#230 [https://github.com/PyWavelets/pywt/pull/230]: add demo of batch processing via concurrent.futures

	#234 [https://github.com/PyWavelets/pywt/pull/234]: ENH: coeffs_to_array supports axes argument as recently added to wavedec*

	#236 [https://github.com/PyWavelets/pywt/pull/236]: BLD: raise an ImportError if Cython should be installed but isn’t.

PyWavelets 0.5.1 Release Notes

PyWavelets 0.5.1 is a bug-fix release with no new features compared to 0.5.0

Bugs Fixed

In release 0.5.0 the wrong edge mode was used for the following three
deprecated modes: ppd, sp1, and per. All deprecated edge mode
names are now correctly converted to the corresponding new names.

One-dimensional discrete wavelet transforms did not properly respect the
axis argument for complex-valued data. Prior to this release, the last
axis was always transformed for arrays with complex dtype. This fix affects
dwt, idwt, wavedec, waverec.

Authors

	Gregory R. Lee

Issues closed for v0.5.1

	#245 [https://github.com/PyWavelets/pywt/issues/245]: Keyword “per” for dwt extension mode

Pull requests for v0.5.1

	#244 [https://github.com/PyWavelets/pywt/issues/244]: FIX: dwt, idwt with complex data now pass axis argument properly

	#246 [https://github.com/PyWavelets/pywt/issues/246]: fix bug in deprecated mode name conversion

PyWavelets 0.5.2 Release Notes

PyWavelets 0.5.2 is a bug-fix release with no new features compared to 0.5.1.

Bugs Fixed

The pywt.data.nino data reader is now compatible with numpy 1.12. (#273)

The wp_scalogram.py demo is now compatibile with matplotlib 2.0. (#276)

Fixed a sporadic segmentation fault affecting stationary wavelet transforms of
multi-dimensional data. (#289)

idwtn now treats coefficients set to None to be treated as zeros (#291).
This makes the behavior consistent with its docstring as well as idwt2.
Previously this raised an error.

The tests are now included when installing from wheels or when running
python setup.py install. (#292)

A bug leading to a potential RuntimeError was fixed in waverec.
This bug only affected transforms where the data was >1D and the transformed
axis was not the first axis of the array. (#294).

Authors

	Ralf Gommers

	Gregory R. Lee

Issues closed for v0.5.2

	#280 [https://github.com/PyWavelets/pywt/issues/280]: No tests found from installed version

	#288 [https://github.com/PyWavelets/pywt/issues/288]: RuntimeErrors and segfaults from swt2() in threaded environments

	#290 [https://github.com/PyWavelets/pywt/issues/290]: idwtn should treat coefficients set to None as zeros

	#293 [https://github.com/PyWavelets/pywt/issues/293]: bug in waverec of n-dimensional data when axis != 0

Pull requests for v0.5.2

	#273 [https://github.com/PyWavelets/pywt/issues/273]: fix non-integer index error

	#276 [https://github.com/PyWavelets/pywt/issues/276]: update wp_scalogram demo work with matplotlib 2.0

	#289 [https://github.com/PyWavelets/pywt/issues/289]: fix memory leak in swt_axis

	#291 [https://github.com/PyWavelets/pywt/issues/291]: idwtn should allow coefficients to be set as None

	#292 [https://github.com/PyWavelets/pywt/issues/292]: MAINT: ensure tests are included in wheels

	#294 [https://github.com/PyWavelets/pywt/issues/294]: FIX: shape adjustment in waverec should not assume a transform along …

	#295 [https://github.com/PyWavelets/pywt/issues/295]: MAINT: fix readthedocs build issue, update numpy version specifier

PyWavelets 1.0.0 Release Notes

Contents

	PyWavelets 1.0.0 Release Notes

	New features

	New 1D test signals

	C99 complex support

	complex-valued CWT

	More flexible specification of some continuous wavelets

	Fully Separable Discrete Wavelet Transfrom

	New thresholding methods

	New anti-symmetric boundary modes

	New functions to ravel and unravel wavedecn coefficients

	New functions to determine multilevel DWT coefficient shapes and sizes

	Deprecated features

	Backwards incompatible changes

	Bugs Fixed

	Other changes

	Authors

	Issues closed for v1.0.0

	Pull requests for v1.0.0

We are very pleased to announce the release of PyWavelets 1.0. We view this
version number as a milestone in the project’s now more than a decade long
history. It reflects that PyWavelets has stabilized over the past few years,
and is now a mature package which a lot of other important packages depend on.
A listing of those package won’t be complete, but some we are aware of are:

	scikit-image [https://scikit-image.org] - image processing in Python

	imagehash [https://github.com/JohannesBuchner/imagehash] - perceptual image hashing

	pyradiomics [https://github.com/Radiomics/pyradiomics] - extraction of Radiomics features from 2D and 3D images and binary masks

	tomopy [https://github.com/tomopy/tomopy] - Tomographic Reconstruction in Python

	SpikeSort [https://github.com/btel/SpikeSort] - Spike sorting library implemented in Python/NumPy/PyTables

	ODL [https://github.com/odlgroup/odl] - operator discretization library

This release requires Python 2.7 or >=3.5 and NumPy 1.9.1 or greater.
The 1.0 release will be the last release supporting Python 2.7. It will be a
Long Term Support (LTS) release, meaning that we will backport critical bug
fixes to 1.0.x for as long as Python itself does so (i.e. until 1 Jan 2020).

New features

New 1D test signals

Many common synthetic 1D test signals have been implemented in the new
function pywt.data.demo_signals to encourage reproducible research. To get
a list of the available signals, call pywt.data.demo_signals('list').
These signals have been validated to match the test signals of the same name
from the Wavelab [https://statweb.stanford.edu/~wavelab] toolbox (with the
kind permission of Dr. David Donoho).

C99 complex support

The Cython modules and underlying C library can now be built with C99 complex
support when supported by the compiler. Doing so improves performance when
running wavelet transforms on complex-valued data. On POSIX systems
(Linux, Mac OS X), C99 complex support is enabled by default at build time.
The user can set the environment variable USE_C99_COMPLEX to 0 or 1 to
manually disable or enable C99 support at compile time.

complex-valued CWT

The continuous wavelet transform, cwt, now also accepts complex-valued
data.

More flexible specification of some continuous wavelets

The continous wavelets "cmor", "shan" and "fbsp" now let the user
specify attributes such as their center frequency and bandwidth that were
previously fixed. See more on this in the section on deprecated features.

Fully Separable Discrete Wavelet Transfrom

A new variant of the multilevel n-dimensional DWT has been implemented. It is
known as the fully separable wavelet transform (FSWT). The functions
fswavedecn fswaverecn correspond to the forward and inverse transforms,
respectively. This differs from the existing wavedecn and waverecn in
dimensions >= 2 in that all levels of decomposition are performed along a
single axis prior to moving on to the next.

New thresholding methods

pywt.threshold now supports non-negative Garotte thresholding
(mode='garotte'). There is also a new function pywt.threshold_firm
that implements firm (semi-soft) thresholding. Both of the these new
thresholding methods are intermediate between soft and hard thresholding.

New anti-symmetric boundary modes

Two new boundary handling modes for the discrete wavelet transforms have been
implemented. These correspond to whole-sample and half-sample anti-symmetric
boundary conditions (antisymmetric and antireflect).

New functions to ravel and unravel wavedecn coefficients

The function ravel_coeffs can be used to ravel all coefficients from
wavedec, wavedec2 or wavedecn into a single 1D array. Unraveling
back into a list of individual n-dimensional coefficients can be performed by
unravel_coeffs.

New functions to determine multilevel DWT coefficient shapes and sizes

The new function wavedecn_size outputs the total number of coefficients
that will be produced by a wavedecn decomposition. The function
wavedecn_shapes returns full shape information for all coefficient arrays
produced by wavedecn. These functions provide the size/shape information
without having to explicitly compute a transform.

Deprecated features

The continous wavelets with names "cmor", "shan" and "fbsp"
should now be modified to include formerly hard-coded attributes such as their
center frequency and bandwidth. Use of the bare names “cmor”. “shan” and
“fbsp” is now deprecated. For “cmor” (and “shan”), the form of the wavelet
name is now “cmorB-C” (“shanB-C”) where B and C are floats representing the
bandwidth frequency and center frequency. For “fbsp” the form should now
incorporate three floats as in “fbspM-B-C” where M is the spline order and B
and C are the bandwidth and center frequencies.

Backwards incompatible changes

Python 2.6, 3.3 and 3.4 are no longer supported.

The order of coefficients returned by swt2 and input to iswt2 have been
reversed so that the decomposition levels are now returned in descending rather
than ascending order. This makes these 2D stationary wavelet functions
consistent with all of the other multilevel discrete transforms in PyWavelets.

For wavedec, wavedec2 and wavedecn, the ability for the user to
specify a level that is greater than the value returned by
dwt_max_level has been restored. A UserWarning is raised instead of a
ValueError in this case.

Bugs Fixed

Assigning new data to the Node or Node2D no longer forces a cast to
float64 when the data is one of the other dtypes supported by the dwt
(float32, complex64, complex128).

Calling pywt.threshold with mode='soft' now works properly for
complex-valued inputs.

A segfault when running multiple swt2 or swtn transforms concurrently has
been fixed.

Several instances of deprecated numpy multi-indexing that caused warnings in
numpy >=1.15 have been resolved.

The 2d inverse stationary wavelet transform, iswt2, now supports non-square
inputs (an unnecessary check for square inputs was removed).

Wavelet packets no longer convert float32 to float64 upon assignment to nodes.

Doctests have been updated to also work with NumPy >= 1.14,

Indexing conventions have been updated to avoid FutureWarnings in NumPy 1.15.

Other changes

Python 3.7 is now officially supported.

Authors

	0-tree +

	Jacopo Antonello +

	Matthew Brett +

	Saket Choudhary +

	Michael V. DePalatis +

	Daniel Goertzen +

	Ralf Gommers

	Mark Harfouche +

	John Kirkham +

	Dawid Laszuk +

	Gregory R. Lee

	Michel Pelletier +

	Balint Reczey +

	SylvainLan +

	Daniele Tricoli

	Kai Wohlfahrt

A total of 16 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v1.0.0

The following 15 issues were closed for this release.

	#405 [https://github.com/PyWavelets/pywt/issues/405]: New warning appearing

	#397 [https://github.com/PyWavelets/pywt/issues/397]: Make pip install work if numpy is not yet installed

	#396 [https://github.com/PyWavelets/pywt/issues/396]: Allow more levels in wavedec

	#386 [https://github.com/PyWavelets/pywt/issues/386]: Improve documentation for cwt

	#396 [https://github.com/PyWavelets/pywt/issues/396]: Allow more levels in wavedec

	#368 [https://github.com/PyWavelets/pywt/issues/368]: Bug in ISWT2 for non-rectangular arrays

	#363 [https://github.com/PyWavelets/pywt/issues/363]: Crash threading swt2

	#357 [https://github.com/PyWavelets/pywt/issues/357]: reconstruction from array_to_coeff and waverec

	#352 [https://github.com/PyWavelets/pywt/issues/352]: FYI: PyWavelet does not correctly declare setup.py dependency…

	#338 [https://github.com/PyWavelets/pywt/issues/338]: upcoef - TypeError: No matching signature found

	#335 [https://github.com/PyWavelets/pywt/issues/335]: Build issue: PyWavelets does not install from sdist

	#333 [https://github.com/PyWavelets/pywt/issues/333]: user-friendly error messages regarding discrete vs. continuous…

	#326 [https://github.com/PyWavelets/pywt/issues/326]: Allow complex dtype of input

	#316 [https://github.com/PyWavelets/pywt/issues/316]: Test fail in some architectures

	#312 [https://github.com/PyWavelets/pywt/issues/312]: Documentation should suggest using the default conda channel

	#308 [https://github.com/PyWavelets/pywt/issues/308]: incorporate bandwidths into CWT wavelet names for families cmor,…

	#306 [https://github.com/PyWavelets/pywt/issues/306]: dwt_max_levels not enough documentation

	#302 [https://github.com/PyWavelets/pywt/issues/302]: Can’t remove cA and then reconstruct

	#290 [https://github.com/PyWavelets/pywt/issues/290]: idwtn should treat coefficients set to None as zeros

	#288 [https://github.com/PyWavelets/pywt/issues/288]: RuntimeErrors and segfaults from swt2() in threaded environments

Pull requests for v1.0.0

A total of 53 pull requests were merged for this release.

	#248 [https://github.com/PyWavelets/pywt/pull/248]: DOC: sync PyWavelets main descriptions.

	#249 [https://github.com/PyWavelets/pywt/pull/249]: Add pyqtgraph demo for plotting wavelets

	#254 [https://github.com/PyWavelets/pywt/pull/254]: DOC: fix rendering of wavelist docstring

	#255 [https://github.com/PyWavelets/pywt/pull/255]: ENH: improve iswt performance

	#256 [https://github.com/PyWavelets/pywt/pull/256]: ENH: add iswtn (n-dimensional inverse SWT)

	#257 [https://github.com/PyWavelets/pywt/pull/257]: s/addional/additional/

	#260 [https://github.com/PyWavelets/pywt/pull/260]: TST: test OS X build on TravisCI. Closes gh-75.

	#262 [https://github.com/PyWavelets/pywt/pull/262]: avoid some compiler warnings

	#263 [https://github.com/PyWavelets/pywt/pull/263]: MAINT: better exception message for Wavelet(‘continuous_familyname’)

	#264 [https://github.com/PyWavelets/pywt/pull/264]: add ASV (continued)

	#265 [https://github.com/PyWavelets/pywt/pull/265]: MAINT: fix more compiler warnings

	#269 [https://github.com/PyWavelets/pywt/pull/269]: allow string input in dwt_max_level

	#270 [https://github.com/PyWavelets/pywt/pull/270]: DOC: update ISWT documentation

	#272 [https://github.com/PyWavelets/pywt/pull/272]: allow separate wavelet/mode for each axis in routines based on…

	#273 [https://github.com/PyWavelets/pywt/pull/273]: fix non-integer index error

	#275 [https://github.com/PyWavelets/pywt/pull/275]: ENH: use single precision routines for half-precision inputs

	#276 [https://github.com/PyWavelets/pywt/pull/276]: update wp_scalogram demo work with matplotlib 2.0

	#285 [https://github.com/PyWavelets/pywt/pull/285]: Fix spelling typo

	#286 [https://github.com/PyWavelets/pywt/pull/286]: MAINT: Package the license file

	#291 [https://github.com/PyWavelets/pywt/pull/291]: idwtn should allow coefficients to be set as None

	#292 [https://github.com/PyWavelets/pywt/pull/292]: MAINT: ensure tests are included in wheels

	#294 [https://github.com/PyWavelets/pywt/pull/294]: FIX: shape adjustment in waverec should not assume a transform…

	#299 [https://github.com/PyWavelets/pywt/pull/299]: DOC: update outdated scipy-user email address

	#300 [https://github.com/PyWavelets/pywt/pull/300]: ENH: compiling with C99 support (non-MSVC only)

	#303 [https://github.com/PyWavelets/pywt/pull/303]: DOC: better document how to handle omitted coefficients in multilevel…

	#309 [https://github.com/PyWavelets/pywt/pull/309]: Document how max levels are determined for multilevel DWT and…

	#310 [https://github.com/PyWavelets/pywt/pull/310]: parse CWT wavelet names for parameters

	#314 [https://github.com/PyWavelets/pywt/pull/314]: TST: Explicity align data records in test_byte_offset()

	#317 [https://github.com/PyWavelets/pywt/pull/317]: TST: specify rtol and atol for assert_allclose calls in test_swt_decomposition

	#320 [https://github.com/PyWavelets/pywt/pull/320]: Suggest using default conda channel to install

	#321 [https://github.com/PyWavelets/pywt/pull/321]: BLD: add pyproject.toml file (PEP 518 support).

	#322 [https://github.com/PyWavelets/pywt/pull/322]: support soft thresholding of complex valued data

	#331 [https://github.com/PyWavelets/pywt/pull/331]: Rename to CONTRIBUTING.rst

	#337 [https://github.com/PyWavelets/pywt/pull/337]: provide a more helpful error message for wrong wavelet type

	#339 [https://github.com/PyWavelets/pywt/pull/339]: check for wrong number of dimensions in upcoef and downcoef

	#340 [https://github.com/PyWavelets/pywt/pull/340]: DOC: fix broken link to Airspeed Velocity documentation

	#344 [https://github.com/PyWavelets/pywt/pull/344]: force legacy numpy repr for doctests

	#349 [https://github.com/PyWavelets/pywt/pull/349]: test case for CWT with complex input

	#350 [https://github.com/PyWavelets/pywt/pull/350]: better document the size requirements for swt/swt2/swtn

	#351 [https://github.com/PyWavelets/pywt/pull/351]: Add two new antisymmetric edge modes

	#353 [https://github.com/PyWavelets/pywt/pull/353]: DOC: add citation info to the front page of the docs.

	#354 [https://github.com/PyWavelets/pywt/pull/354]: add firm (semi-soft) and non-negative garotte thresholding

	#355 [https://github.com/PyWavelets/pywt/pull/355]: swt(): inference of level=None to depend on axis

	#356 [https://github.com/PyWavelets/pywt/pull/356]: fix: default level in wavedec2 and wavedecn can be too conservative

	#360 [https://github.com/PyWavelets/pywt/pull/360]: fix Continuous spelling

	#361 [https://github.com/PyWavelets/pywt/pull/361]: AttributeError when using coeffs_to_array

	#362 [https://github.com/PyWavelets/pywt/pull/362]: Fix spelling of continuous globally

	#364 [https://github.com/PyWavelets/pywt/pull/364]: DOC: Explicitly print wavelet name for invalid wavelets

	#367 [https://github.com/PyWavelets/pywt/pull/367]: fix segfault related to parallel SWT

	#369 [https://github.com/PyWavelets/pywt/pull/369]: remove iswt2’s restriction on non-square inputs

	#376 [https://github.com/PyWavelets/pywt/pull/376]: add common 1d synthetic signals

	#377 [https://github.com/PyWavelets/pywt/pull/377]: minor update to demo_signals

	#378 [https://github.com/PyWavelets/pywt/pull/378]: numpy: 1.15 multiindexing warning. targetted fix

	#380 [https://github.com/PyWavelets/pywt/pull/380]: BLD: fix doc build on ReadTheDocs, need matplotlib for plots…

	#381 [https://github.com/PyWavelets/pywt/pull/381]: Fix corner case for small scales in CWT

	#382 [https://github.com/PyWavelets/pywt/pull/382]: avoid FutureWarnings related to multiindexing in Numpy1.15

	#383 [https://github.com/PyWavelets/pywt/pull/383]: adding Community guidelines

	#384 [https://github.com/PyWavelets/pywt/pull/384]: swap swt2 coefficient order (and remove FutureWarnings)

	#387 [https://github.com/PyWavelets/pywt/pull/387]: improve CWT docs

	#390 [https://github.com/PyWavelets/pywt/pull/390]: MAINT: update Python version support. Closes gh-385.

	#391 [https://github.com/PyWavelets/pywt/pull/391]: fix broken link in documentation

	#392 [https://github.com/PyWavelets/pywt/pull/392]: do not force float64 dtype on assignment to Node, Node2D

	#398 [https://github.com/PyWavelets/pywt/pull/398]: MAINT: update .gitignore for files generated during build.

	#401 [https://github.com/PyWavelets/pywt/pull/401]: Fix failing numpy 1.9.3 build on Travis CI

	#403 [https://github.com/PyWavelets/pywt/pull/403]: Change ValueError to UserWarning when level is > dwt_max_level

	#404 [https://github.com/PyWavelets/pywt/pull/404]: BLD: fix ReadTheDocs build. Outdated NumPy gave a conflict with MPL.

	#410 [https://github.com/PyWavelets/pywt/pull/410]: DOC: rewrite docs front page

	#413 [https://github.com/PyWavelets/pywt/pull/413]: add wavelets.pybytes.com disclaimer

PyWavelets 1.0.1 Release Notes

PyWavelets 1.0.1 is a bug-fix release with no new features compared to 1.0.0.

Bugs Fixed

Key-based assignment of coefficients to a FswavedecnResult object (i.e. via
its __setitem__ method) has been fixed.

The order that the individual subband coefficients were stacked by the
function pywt.ravel_coeffs is now guaranteed to be consistent across all
supported Python versions. Explicit alphabetic ordering of subband coefficient
names is used for consitent ordering regardless of Python version.

Authors

	Gregory R. Lee

Issues closed for v1.0.1

	#426 [https://github.com/PyWavelets/pywt/issues/426]: Ordering of the coefficients stacked in pywt.ravel_coeffs can vary across Python versions

	#425 [https://github.com/PyWavelets/pywt/issues/425]: error when trying to assign modified coefficients to a FswavedecnResults object

Pull requests for v1.0.1

	#423 [https://github.com/PyWavelets/pywt/issues/423]: fix bug in FswavedecnResult.__setitem__ and improve docstrings

	#427 [https://github.com/PyWavelets/pywt/issues/427]: fix: enforce consistent coefficient order for ravel_coeffs

PyWavelets 1.0.2 Release Notes

PyWavelets 1.0.2 is a bug-fix and maintenance release with no new features
compared to 1.0.1.

Bugs Fixed

A bug in iswtn when using some combinations of user-specified axes was fixed.

A potential error related to coefficient shape mismatch during WaveletPacket
or WaveletPacket2D reconstruction was fixed.

Other Changes

A deprecated import of Iterable was fixed.

The spelling of “Garrote” was fixed in the wavelet thresholding documentation.
For backwards compatibility with 1.0.0, the incorrect (“garotte”)
spelling is also accepted for the mode parameter of pywt.threshold.

The spelling of “supported” was fixed in one of the ValueError messages that
can be returned by pywt.cwt.

Cython language compatibility has been pinned to language_level = '2'. This
is in contrast to the master branch which is now using
language_level = '3'. To support this, the minimum supported Cython version
has been raised to 0.23.5.

Authors

Four authors contributed PRs for the 1.0.2 release.

Thomas A. Caswell
Corey Goldberg
Gregory R. Lee
Lokesh Ravindranathan

Thanks also goes to Ralf Gommers as a reviewer of most of these.

Issues closed for v1.0.2

	#447 [https://github.com/PyWavelets/pywt/issues/447]: Issue using pywt.WaveletPacket2D

	#449 [https://github.com/PyWavelets/pywt/issues/449]: Coefficients arrays must have the same dtype error in iswt function

	#460 [https://github.com/PyWavelets/pywt/issues/460]: iswtn error when using axes and excluded dim is desn’t comply to the level

Pull requests for v1.0.2

	#454 [https://github.com/PyWavelets/pywt/issues/454]: BLD: 1.0.x pin cython language level to ‘2’

	#455 [https://github.com/PyWavelets/pywt/issues/455]: backport of #448 (fix coefficient shape mismatch in WaveletPacket reconstruction)

	#456 [https://github.com/PyWavelets/pywt/issues/456]: MAINT: 1.0.x: Spelling correction

	#457 [https://github.com/PyWavelets/pywt/issues/457]: MAINT: 1.0.x Fix spelling of “Garrote”

	#458 [https://github.com/PyWavelets/pywt/issues/458]: MAINT: 1.0.x Fix deprecated import for Iterable

	#464 [https://github.com/PyWavelets/pywt/issues/464]: backport of #448 (fix coefficient shape mismatch in WaveletPacket reconstruction)

	#465 [https://github.com/PyWavelets/pywt/issues/465]: backport of gh-462 (iswtn axis fix)

	#469 [https://github.com/PyWavelets/pywt/issues/469]: MAINT 1.0.x backport #452 (bump minimum supported Cython version)

The backports listed above correspond to the following PRs from the master branch

	#436 [https://github.com/PyWavelets/pywt/issues/436]: Fix deprecated import for Iterable

	#438 [https://github.com/PyWavelets/pywt/issues/438]: Fix spelling of “Garrote”

	#446 [https://github.com/PyWavelets/pywt/issues/446]: Spelling correction

	#448 [https://github.com/PyWavelets/pywt/issues/448]: Properly trim wavelet packet node coefficients during reconstruction

	#450 [https://github.com/PyWavelets/pywt/issues/450]: handle mixed dtype cofficients correctly across inverse transforms

	#452 [https://github.com/PyWavelets/pywt/issues/452]: bump minimum supported Cython version

	#462 [https://github.com/PyWavelets/pywt/issues/462]: fix bug in iswtn for data of arbitrary shape when using user-specified axes

PyWavelets 1.0.3 Release Notes

PyWavelets 1.0.3 is functionally equivalent to the 1.0.2 release. It was made
to add the add an archive of the JOSS paper to the 1.0.x branch and serve as a
reference corresponding to the version of the software reviewed that was peer
reviewed.

PyWavelets 1.1.0 Release Notes

Contents

	PyWavelets 1.1.0 Release Notes

	New features

	Backwards incompatible changes

	Bugs Fixed

	Other changes

	Authors

	Issues closed for v1.1.0

	Pull requests for v1.1.0

We are very pleased to announce the release of PyWavelets 1.1.

This release includes enhanced functionality for both the stationary wavelet
transforms (swt, swt2, swtn) as well as the continuous wavelet
transform (cwt). In addition, there are a handful of bug fixes as
described in more detail below.

This release has dropped Python 2.7 support and now requires Python >= 3.5.

In addition to these changes to the software itself, a paper describing
PyWavelets was recently published in The Journal of Open Source Software:
https://joss.theoj.org/papers/10.21105/joss.01237

New features

	All swt functions now have a new trim_approx option that can be used
to exclude the approximation coefficients from all but the final level of
decomposition. This mode makes the output of these functions consistent with
the format of the output from the corresponding wavedec functions.

	All swt functions also now have a new norm option that, when set to
True and used in combination with trim_approx=True, gives a partition
of variance across the transform coefficients. In other words, the sum of
the variances of all coefficients is equal to the variance of the original
data. This partitioning of variance makes the swt transform more similar
to the multiple-overlap DWT (MODWT) described in Percival and Walden’s book,
“Wavelet Methods for Time Series Analysis”. (#476)

A demo of this new swt functionality is available at
https://github.com/PyWavelets/pywt/blob/master/demo/swt_variance.py

	The continuous wavelet transform (cwt) now offers an FFT-based
implementation in addition to the previous convolution based one. The new
method argument can be set to either 'conv' or 'fft' to select
between these two implementations. (#490).

	The cwt now also has axis support so that CWTs can be applied in
batch along any axis of an n-dimensional array. This enables faster batch
transformation of signals. (#509)

Backwards incompatible changes

	When the input to cwt is single precision, the computations are now
performed in single precision. This was done both for efficiency and to make
cwt handle dtypes consistently with the discrete transforms in
PyWavelets. This is a change from the prior behaviour of always performing
the cwt in double precision. (#507)

	When using complex-valued wavelets with the cwt, the output will now be
the complex conjugate of the result that was produced by PyWavelets 1.0.x.
This was done to account for a bug described below. The magnitude of the
cwt coefficients will still match those from previous releases. (#439)

Bugs Fixed

	For a cwt with complex wavelets, the results in PyWavelets 1.0.x releases
matched the output of Matlab R2012a’s cwt. Howveer, older Matlab releases
like R2012a had a phase that was of opposite sign to that given in textbook
definitions of the CWT (Eq. 2 of Torrence and Compo’s review article, “A
Practical Guide to Wavelet Analysis”). Consequently, the wavelet coefficients
were the complex conjugates of the expected result. This was validated by
comparing the results of a transform using cmor1.0-1.0 as compared to the
cwt implementation available in Matlab R2017b as well as the function
wt.m from the Lancaster University Physics department’s
MODA toolbox [https://github.com/luphysics/MODA]. (#439)

	For some boundary modes and data sizes, round-trip dwt/idwt can
result in an output that has one additional coefficient. Prior to this
relese, this could cause a failure during WaveletPacket or
WaveletPacket2D reconstruction. These wavelet packet transforms have now
been fixed and round-trip wavelet packet transforms always preserve the
original data shape. (#448)

	All inverse transforms now handle mixed precision coefficients consistently.
Prior to this release some inverse transform raised an error upon
encountering mixed precision dtypes in the wavelet subbands. In release 1.1,
when the user-provided coefficients are a mixture of single and double
precision, all coefficients will be promoted to double precision. (#450)

	A bug that caused a failure for iswtn when using user-provided axes
with non-uniform shape along the transformed axes has been fixed. (#462)

Other changes

	The PyWavelet test suite now uses pytest rather than nose. (#477)

	Cython code has been updated to use language_level=3. (#435)

	PyWavelets has adopted the SciPy Code of Conduct. (#521)

Authors

	Pavle Boškoski +

	Luke M Craig +

	Corey Goldberg

	Ralf Gommers

	Gregory R. Lee

	Pavle Boškoski +

	Lokesh Ravindranathan

	Alexandre Sauve +

	Arfon Smith +

	Valentin Valls +

A total of 10 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v1.1.0

	#389 [https://github.com/PyWavelets/pywt/issues/389]: Change test suite from nose to pytest

	#445 [https://github.com/PyWavelets/pywt/issues/445]: Batch load for pywt.cwt

	#449 [https://github.com/PyWavelets/pywt/issues/449]: Coefficients arrays must have the same dtype error in iswt function

Pull requests for v1.1.0

	#434 [https://github.com/PyWavelets/pywt/pull/434]: Drop Python 2.7 testing on CI and update docs for Python 3.5+…

	#435 [https://github.com/PyWavelets/pywt/pull/435]: set language_level=3 for Cython

	#436 [https://github.com/PyWavelets/pywt/pull/436]: Fix deprecated import for Iterable

	#438 [https://github.com/PyWavelets/pywt/pull/438]: Fix spelling of “Garrote”

	#439 [https://github.com/PyWavelets/pywt/pull/439]: fix the phase of CWT when using complex mother wavelets

	#442 [https://github.com/PyWavelets/pywt/pull/442]: document the numpy.pad equivalent of ‘antireflect’

	#446 [https://github.com/PyWavelets/pywt/pull/446]: Spelling correction

	#448 [https://github.com/PyWavelets/pywt/pull/448]: Properly trim wavelet packet node coefficients during reconstruction

	#450 [https://github.com/PyWavelets/pywt/pull/450]: handle mixed dtype cofficients correctly across inverse transforms

	#462 [https://github.com/PyWavelets/pywt/pull/462]: fix bug in iswtn for data of arbitrary shape when using user-specified…

	#463 [https://github.com/PyWavelets/pywt/pull/463]: TST: fix misc. doctest failures (test_doc.py)

	#471 [https://github.com/PyWavelets/pywt/pull/471]: user-friendly error messages about multilevel DWT format

	#476 [https://github.com/PyWavelets/pywt/pull/476]: swt normalization and option to trim the approximation coefficients

	#477 [https://github.com/PyWavelets/pywt/pull/477]: MAINT/TST: update tests to use pytest

	#490 [https://github.com/PyWavelets/pywt/pull/490]: cwt with fft convolution support

	#495 [https://github.com/PyWavelets/pywt/pull/495]: BLD: add missing import of warnings module to setup.py

	#499 [https://github.com/PyWavelets/pywt/pull/499]: register markers for pytest 4.5 compatibility

	#502 [https://github.com/PyWavelets/pywt/pull/502]: fix docstring’s scale2frequency parameter order

	#506 [https://github.com/PyWavelets/pywt/pull/506]: Guard against trying to transform along size 0 axes

	#507 [https://github.com/PyWavelets/pywt/pull/507]: preserve single precision in CWT

	#509 [https://github.com/PyWavelets/pywt/pull/509]: add axis support to cwt

	#510 [https://github.com/PyWavelets/pywt/pull/510]: add demo using swt with norm=True to analyze variance across…

	#511 [https://github.com/PyWavelets/pywt/pull/511]: MAINT: split bundled licenses into a separate file

	#514 [https://github.com/PyWavelets/pywt/pull/514]: Small typo in the doc

	#516 [https://github.com/PyWavelets/pywt/pull/516]: Fix docstrings to avoid sphinx warnings

	#521 [https://github.com/PyWavelets/pywt/pull/521]: DOC: adopt the SciPy Code of Conduct

PyWavelets 1.1.1 Release Notes

Contents

	PyWavelets 1.1.1 Release Notes

This release is identical in functionality to 1.1.0.

It fixes setup.py to prevent pip from trying to install from PyPI for
Python < 3.5.

PyWavelets 1.2.0 Release Notes

Contents

	PyWavelets 1.2.0 Release Notes

	New features

	Backwards incompatible changes

	Bugs Fixed

	Other changes

	Authors

	Issues closed for v1.2

	Pull requests for v1.2

We are very pleased to announce the release of PyWavelets 1.2.

This release has new discrete wavelet transforms features incleading a series
of multiresolution analysis functions (details below).

PyWavelets has dropped support for Python 3.5 and 3.6 and now supports
Python 3.7-3.10.

We also now provide aarch64 linux wheels as well as universal2 and arm64
wheels that are compatible with Apple’s M1 processors.

New features

	There is a new series of multilevel stationary wavelet transforms (mra,
mra2 and mran) suited for multiresolution analysis of 1D, 2D or nD
signals, respectively. This MRA analysis is also known as the additive
wavelet decomposition because the corresponding inverse functions
(imra, imra2 or imran) reconstruct the original signal by
simple addition of the components. These are a good alternative to the use
of the existing SWT functions when it is important to have features aligned
across wavelet scales (see the new demo in demo/mra_vs_swt.py).

	There is now an n-dimensional implementation available for the wavelet packet
transforms (see class WaveletPacketND).

Backwards incompatible changes

	The image returned by pywt.data.camera has been replaced by a similar,
CC0-licensed image because the original image was determined to only be
licensed for non-commercial use. Any users who still need the prior camera
image for non-commercial use can find it many places online by performing a
web search for “cameraman test image”.

Bugs Fixed

	Add input length check in dwt_single for reflect modes.

	Demos were updated for compatibility with recent Matplotlib versions.

	Removed deprecated import from imp.

Other changes

	PyWavelets has dropped support for Python 3.5 and 3.6 in this release.

Authors

	ElConno +

	Ralf Gommers

	Gregory R. Lee

	Jakub Mandula +

	nperraud +

	ossdev07 +

A total of 6 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.

Issues closed for v1.2

	#235 [https://github.com/PyWavelets/pywt/issues/235]: Build issue: cython not recognized

	#545 [https://github.com/PyWavelets/pywt/issues/545]: Request: add __reduce__ method for WaveletPacket object

	#554 [https://github.com/PyWavelets/pywt/issues/554]: imp is deprecated

Pull requests for v1.2

	#393 [https://github.com/PyWavelets/pywt/pull/393]: Wavelet packets: extend to nD and support subsets of the axes

	#525 [https://github.com/PyWavelets/pywt/pull/525]: WIP: test against Python 3.8

	#527 [https://github.com/PyWavelets/pywt/pull/527]: Multiresolution Analysis

	#540 [https://github.com/PyWavelets/pywt/pull/540]: remove unused distutils import from __init__.py

	#546 [https://github.com/PyWavelets/pywt/pull/546]: ENH: make Wavelet, WaveletPacket, WaveletPacket2D and ContinuousWavelet…

	#547 [https://github.com/PyWavelets/pywt/pull/547]: ContinuousWavelet: add tests for dtype and remove unused **kwargs

	#552 [https://github.com/PyWavelets/pywt/pull/552]: Cython 3.0 compatibility: explicitly call import_array()

	#559 [https://github.com/PyWavelets/pywt/pull/559]: MAINT: bump minimum Python version to 3.7

	#567 [https://github.com/PyWavelets/pywt/pull/567]: Documentation about trim_approx in swt2 is wrong

	#571 [https://github.com/PyWavelets/pywt/pull/571]: improve documentation of padding in coeffs_to_array

	#572 [https://github.com/PyWavelets/pywt/pull/572]: Replace camera image with a CC0-licensed equivalent

	#573 [https://github.com/PyWavelets/pywt/pull/573]: switch from terrify to multibuild for OS X setup on Travis

	#578 [https://github.com/PyWavelets/pywt/pull/578]: Add Python 3.9 to CI and classifiers

	#584 [https://github.com/PyWavelets/pywt/pull/584]: MAINT: remove use of deprecated np.int/float aliases

	#598 [https://github.com/PyWavelets/pywt/pull/598]: Add input length check in dwt_single for reflect modes

	#601 [https://github.com/PyWavelets/pywt/pull/601]: Add wheel building and deployment via GitHub Actions and cibuildwheel

	#604 [https://github.com/PyWavelets/pywt/pull/604]: MAINT: update pyproject.toml and setup.py for Python 3.10

	#608 [https://github.com/PyWavelets/pywt/pull/608]: BLD: update Cython build dependency to recent release and <3.0

	#609 [https://github.com/PyWavelets/pywt/pull/609]: MAINT: fix `origin=’image’` calls that Matplotlib no longer…

	#610 [https://github.com/PyWavelets/pywt/pull/610]: Update GitHub Actions workflow to build Python 3.10 wheels

	#611 [https://github.com/PyWavelets/pywt/pull/611]: MAINT: fix doc build issues

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__delitem__() (pywt.BaseNode method)

 	__getitem__() (pywt.BaseNode method)

 	__init__() (pywt.BaseNode method)

 	(pywt.WaveletPacket method)

 	(pywt.WaveletPacket2D method)

 	(pywt.WaveletPacketND method)

 	
 	__setitem__() (pywt.BaseNode method)

A

 	
 	array_to_coeffs() (in module pywt)

 	
 	axes (pywt.BaseNode attribute)

B

 	
 	bandwidth_frequency (pywt.ContinuousWavelet attribute)

 	BaseNode (class in pywt)

 	
 	biorthogonal (pywt.ContinuousWavelet attribute)

 	(pywt.Wavelet attribute)

C

 	
 	center_frequency (pywt.ContinuousWavelet attribute)

 	central_frequency() (in module pywt)

 	coeffs_to_array() (in module pywt)

 	
 	complex_cwt (pywt.ContinuousWavelet attribute)

 	ContinuousWavelet (class in pywt)

 	cwt() (in module pywt)

D

 	
 	data (pywt.BaseNode attribute)

 	dec_hi (pywt.Wavelet attribute)

 	dec_len (pywt.Wavelet attribute)

 	dec_lo (pywt.Wavelet attribute)

 	decompose() (pywt.BaseNode method)

 	(pywt.Node method)

 	(pywt.Node2D method)

 	(pywt.NodeND method)

 	
 	demo_signal() (in module pywt.data)

 	DiscreteContinuousWavelet() (in module pywt)

 	downcoef() (in module pywt)

 	dwt() (in module pywt)

 	dwt2() (in module pywt)

 	dwt_coeff_len() (in module pywt)

 	dwt_max_level() (in module pywt)

 	dwtn() (in module pywt)

 	dwtn_max_level() (in module pywt)

F

 	
 	families() (in module pywt)

 	family_name (pywt.ContinuousWavelet attribute)

 	(pywt.Wavelet attribute)

 	fbsp_order (pywt.ContinuousWavelet attribute)

 	
 	filter_bank (pywt.Wavelet attribute)

 	fswavedecn() (in module pywt)

 	FswavedecnResult (class in pywt)

 	fswaverecn() (in module pywt)

G

 	
 	get_leaf_nodes() (pywt.BaseNode method)

 	get_level() (pywt.WaveletPacket method)

 	(pywt.WaveletPacket2D method)

 	(pywt.WaveletPacketND method)

 	
 	get_subnode() (pywt.BaseNode method)

H

 	
 	has_any_subnode (pywt.BaseNode attribute)

I

 	
 	idwt() (in module pywt)

 	idwt2() (in module pywt)

 	idwtn() (in module pywt)

 	imra() (in module pywt)

 	imra2() (in module pywt)

 	imran() (in module pywt)

 	
 	integrate_wavelet() (in module pywt)

 	inverse_filter_bank (pywt.Wavelet attribute)

 	is_empty (pywt.BaseNode attribute)

 	iswt() (in module pywt)

 	iswt2() (in module pywt)

 	iswtn() (in module pywt)

L

 	
 	level (pywt.BaseNode attribute)

 	
 	lower_bound (pywt.ContinuousWavelet attribute)

M

 	
 	maxlevel (pywt.BaseNode attribute)

 	mode (pywt.BaseNode attribute)

 	
 	mra() (in module pywt)

 	mra2() (in module pywt)

 	mran() (in module pywt)

N

 	
 	name (pywt.ContinuousWavelet attribute)

 	(pywt.Wavelet attribute)

 	Node (class in pywt)

 	Node2D (class in pywt)

 	
 	node_name (pywt.BaseNode attribute)

 	(pywt.Node attribute)

 	(pywt.Node2D attribute)

 	(pywt.NodeND attribute)

 	NodeND (class in pywt)

O

 	
 	orthogonal (pywt.ContinuousWavelet attribute)

 	(pywt.Wavelet attribute)

 	
 	orthogonal_filter_bank() (in module pywt)

P

 	
 	pad() (in module pywt)

 	parent (pywt.BaseNode attribute)

 	
 	path (pywt.BaseNode attribute)

 	path_tuple (pywt.BaseNode attribute)

Q

 	
 	qmf() (in module pywt)

R

 	
 	ravel_coeffs() (in module pywt)

 	rec_hi (pywt.Wavelet attribute)

 	rec_len (pywt.Wavelet attribute)

 	rec_lo (pywt.Wavelet attribute)

 	reconstruct() (pywt.BaseNode method)

 	(pywt.Node method)

 	(pywt.Node2D method)

 	(pywt.NodeND method)

 	(pywt.WaveletPacket method)

 	(pywt.WaveletPacket2D method)

 	(pywt.WaveletPacketND method)

S

 	
 	scale2frequency() (in module pywt)

 	short_family_name (pywt.ContinuousWavelet attribute)

 	(pywt.Wavelet attribute)

 	short_name (pywt.Wavelet attribute)

 	swt() (in module pywt)

 	
 	swt2() (in module pywt)

 	swt_max_level() (in module pywt)

 	swtn() (in module pywt)

 	symmetry (pywt.ContinuousWavelet attribute)

 	(pywt.Wavelet attribute)

T

 	
 	threshold() (in module pywt)

 	
 	threshold_firm() (in module pywt)

U

 	
 	unravel_coeffs() (in module pywt)

 	
 	upcoef() (in module pywt)

 	upper_bound (pywt.ContinuousWavelet attribute)

V

 	
 	vanishing_moments_phi (pywt.Wavelet attribute)

 	
 	vanishing_moments_psi (pywt.Wavelet attribute)

W

 	
 	walk() (pywt.BaseNode method)

 	walk_depth() (pywt.BaseNode method)

 	wavedec() (in module pywt)

 	wavedec2() (in module pywt)

 	wavedecn() (in module pywt)

 	wavedecn_shapes() (in module pywt)

 	wavedecn_size() (in module pywt)

 	wavefun() (pywt.ContinuousWavelet method)

 	(pywt.Wavelet method)

 	
 	Wavelet (class in pywt)

 	wavelet (pywt.BaseNode attribute)

 	WaveletPacket (class in pywt)

 	WaveletPacket2D (class in pywt)

 	WaveletPacketND (class in pywt)

 	wavelist() (in module pywt)

 	waverec() (in module pywt)

 	waverec2() (in module pywt)

 	waverecn() (in module pywt)

PyWavelets Code of Conduct - How to follow up on a report

This is the manual followed by PyWavelets’s Code of Conduct Committee. It’s
used when we respond to an issue to make sure we’re consistent and fair.

Enforcing the Code of Conduct impacts our community today and for the future.
It’s an action that we do not take lightly. When reviewing enforcement
measures, the Code of Conduct Committee will keep the following values and
guidelines in mind:

	Act in a personal manner rather than impersonal. The Committee can engage
the parties to understand the situation, while respecting the privacy and any
necessary confidentiality of reporters. However, sometimes it is necessary
to communicate with one or more individuals directly: the Committee’s goal is
to improve the health of our community rather than only produce a formal
decision.

	Emphasize empathy for individuals rather than judging behavior, avoiding
binary labels of “good” and “bad/evil”. Overt, clear-cut aggression and
harassment exists and we will be address that firmly. But many scenarios
that can prove challenging to resolve are those where normal disagreements
devolve into unhelpful or harmful behavior from multiple parties.
Understanding the full context and finding a path that re-engages all is
hard, but ultimately the most productive for our community.

	We understand that email is a difficult medium and can be isolating.
Receiving criticism over email, without personal contact, can be
particularly painful. This makes it especially important to keep an
atmosphere of open-minded respect of the views of others. It also means
that we must be transparent in our actions, and that we will do everything
in our power to make sure that all our members are treated fairly and with
sympathy.

	Discrimination can be subtle and it can be unconscious. It can show itself
as unfairness and hostility in otherwise ordinary interactions. We know
that this does occur, and we will take care to look out for it. We would
very much like to hear from you if you feel you have been treated unfairly,
and we will use these procedures to make sure that your complaint is heard
and addressed.

	Help increase engagement in good discussion practice: try to identify where
discussion may have broken down and provide actionable information, pointers
and resources that can lead to positive change on these points.

	Be mindful of the needs of new members: provide them with explicit support
and consideration, with the aim of increasing participation from
underrepresented groups in particular.

	Individuals come from different cultural backgrounds and native languages.
Try to identify any honest misunderstandings caused by a non-native speaker
and help them understand the issue and what they can change to avoid causing
offence. Complex discussion in a foreign language can be very intimidating,
and we want to grow our diversity also across nationalities and cultures.

Mediation: voluntary, informal mediation is a tool at our disposal. In
contexts such as when two or more parties have all escalated to the point of
inappropriate behavior (something sadly common in human conflict), it may be
useful to facilitate a mediation process. This is only an example: the
Committee can consider mediation in any case, mindful that the process is meant
to be strictly voluntary and no party can be pressured to participate. If the
Committee suggests mediation, it should:

	Find a candidate who can serve as a mediator.

	Obtain the agreement of the reporter(s). The reporter(s) have complete
freedom to decline the mediation idea, or to propose an alternate mediator.

	Obtain the agreement of the reported person(s).

	Settle on the mediator: while parties can propose a different mediator than
the suggested candidate, only if common agreement is reached on all terms can
the process move forward.

	Establish a timeline for mediation to complete, ideally within two weeks.

The mediator will engage with all the parties and seek a resolution that is
satisfactory to all. Upon completion, the mediator will provide a report
(vetted by all parties to the process) to the Committee, with recommendations
on further steps. The Committee will then evaluate these results (whether
satisfactory resolution was achieved or not) and decide on any additional
action deemed necessary.

How the committee will respond to reports

When the committee (or a committee member) receives a report, they will first
determine whether the report is about a clear and severe breach (as defined
below). If so, immediate action needs to be taken in addition to the regular
report handling process.

Clear and severe breach actions

We know that it is painfully common for internet communication to start at or
devolve into obvious and flagrant abuse. We will deal quickly with clear and
severe breaches like personal threats, violent, sexist or racist language.

When a member of the Code of Conduct committee becomes aware of a clear and
severe breach, they will do the following:

	Immediately disconnect the originator from all PyWavelets communication
channels.

	Reply to the reporter that their report has been received and that the
originator has been disconnected.

	In every case, the moderator should make a reasonable effort to contact the
originator, and tell them specifically how their language or actions
qualify as a “clear and severe breach”. The moderator should also say
that, if the originator believes this is unfair or they want to be
reconnected to PyWavelets, they have the right to ask for a review, as below,
by the Code of Conduct Committee.
The moderator should copy this explanation to the Code of Conduct Committee.

	The Code of Conduct Committee will formally review and sign off on all cases
where this mechanism has been applied to make sure it is not being used to
control ordinary heated disagreement.

Report handling

When a report is sent to the committee they will immediately reply to the
reporter to confirm receipt. This reply must be sent within 72 hours, and the
group should strive to respond much quicker than that.

If a report doesn’t contain enough information, the committee will obtain all
relevant data before acting. The committee is empowered to act on the Steering
Council’s behalf in contacting any individuals involved to get a more complete
account of events.

The committee will then review the incident and determine, to the best of their
ability:

	What happened.

	Whether this event constitutes a Code of Conduct violation.

	Who are the responsible party(ies).

	Whether this is an ongoing situation, and there is a threat to anyone’s
physical safety.

This information will be collected in writing, and whenever possible the
group’s deliberations will be recorded and retained (i.e. chat transcripts,
email discussions, recorded conference calls, summaries of voice conversations,
etc).

It is important to retain an archive of all activities of this committee to
ensure consistency in behavior and provide institutional memory for the
project. To assist in this, the default channel of discussion for this
committee will be a private mailing list accessible to current and future
members of the committee as well as members of the Steering Council upon
justified request. If the Committee finds the need to use off-list
communications (e.g. phone calls for early/rapid response), it should in all
cases summarize these back to the list so there’s a good record of the process.

The Code of Conduct Committee should aim to have a resolution agreed upon within
two weeks. In the event that a resolution can’t be determined in that time, the
committee will respond to the reporter(s) with an update and projected timeline
for resolution.

Resolutions

The committee must agree on a resolution by consensus. If the group cannot reach
consensus and deadlocks for over a week, the group will turn the matter over to
the Steering Council for resolution.

Possible responses may include:

	Taking no further action

	if we determine no violations have occurred.

	if the matter has been resolved publicly while the committee was considering responses.

	Coordinating voluntary mediation: if all involved parties agree, the
Committee may facilitate a mediation process as detailed above.

	Remind publicly, and point out that some behavior/actions/language have been
judged inappropriate and why in the current context, or can but hurtful to
some people, requesting the community to self-adjust.

	A private reprimand from the committee to the individual(s) involved. In this
case, the group chair will deliver that reprimand to the individual(s) over
email, cc’ing the group.

	A public reprimand. In this case, the committee chair will deliver that
reprimand in the same venue that the violation occurred, within the limits of
practicality. E.g., the original mailing list for an email violation, but
for a chat room discussion where the person/context may be gone, they can be
reached by other means. The group may choose to publish this message
elsewhere for documentation purposes.

	A request for a public or private apology, assuming the reporter agrees to
this idea: they may at their discretion refuse further contact with the
violator. The chair will deliver this request. The committee may, if it
chooses, attach “strings” to this request: for example, the group may ask a
violator to apologize in order to retain one’s membership on a mailing list.

	A “mutually agreed upon hiatus” where the committee asks the individual to
temporarily refrain from community participation. If the individual chooses
not to take a temporary break voluntarily, the committee may issue a
“mandatory cooling off period”.

	A permanent or temporary ban from some or all PyWavelets spaces (mailing
lists, gitter.im, etc.). The group will maintain records of all such bans so
that they may be reviewed in the future or otherwise maintained.

Once a resolution is agreed upon, but before it is enacted, the committee will
contact the original reporter and any other affected parties and explain the
proposed resolution. The committee will ask if this resolution is acceptable,
and must note feedback for the record.

Finally, the committee will make a report to the PyWavelets Steering Council
(as well as the PyWavelets core team in the event of an ongoing resolution,
such as a ban).

The committee will never publicly discuss the issue; all public statements will
be made by the chair of the Code of Conduct Committee or the PyWavelets
Steering Council.

Conflicts of Interest

In the event of any conflict of interest, a committee member must immediately
notify the other members, and recuse themselves if necessary.

 pyplots/cwt_scaling_demo.png
filter |FFT(filter)|?
10
— real scale — Power
05 scale =
—— imaginary ‘V‘

00
1o.

scale
05 scale
00
1o

scale
05 scale
00
1o

scale
05 scale =
00
1o

scale = 10
05 scale = 10
00
1o

scale = 15
05 scale = 15

-100 -50 o 50 100 3

time (samples)

frequency (radians)

pyplots/plot_2d_bases.png
wavedec? (4 level) fswavedecn (4 level)

ah
h
av ad cd', "ad)
v d (ad', 'd") (d,d)
wavelet packet wavelet packet
(full: 4 level) (custom)
ah
h
ad
vh
d
w vd

pyplots/camera_approx_detail.png
Approximation Horizontal detail Diagonal detail

pyplots/plot_boundary_modes.png
symmetric periodic
- B wf o] &) o)~
. 4ele oo oo 4 . .« 9 .
2 2
T r
0 10 20 30 40 0 10 20 30 40 0 1 20 30 40
antisymmetric periodization
10
) -ﬁ' -,\ A‘ A‘ -~ -~ A‘
5 s 5 15 K
| o N N R
2
e " -5 r 3
0 10 20 30 40 3 20 2
. 4
. 2
2
— P[P [N

pyplots/plot_mallat_2d.png
1 level 2 level 3 level

decomposition decomposition decomposition
aaa | aah
aa ah ah
aav | aad
a h h h
av ad av ad
v d v d v d

Coefficients Coefficients Coefficients
Image (1 level) (2 level) (3 level)

_images/camera_approx_detail.png
Approximation Horizontal detail Diagonal detail

_images/cwt_scaling_demo.png
filter |FFT(filter)|?
10
— real scale — Power
05 scale =
—— imaginary ‘V‘

00
1o.

scale
05 scale
00
1o

scale
05 scale
00
1o

scale
05 scale =
00
1o

scale = 10
05 scale = 10
00
1o

scale = 15
05 scale = 15

-100 -50 o 50 100 3

time (samples)

frequency (radians)

_images/plot_2d_bases.png
wavedec? (4 level) fswavedecn (4 level)

ah
h
av ad cd', "ad)
v d (ad', 'd") (d,d)
wavelet packet wavelet packet
(full: 4 level) (custom)
ah
h
ad
vh
d
w vd

nav.xhtml

 Table of Contents

 		
 PyWavelets - Wavelet Transforms in Python

 		
 Installing

 		
 Building from source

 		
 API Reference

 		
 Wavelets

 		
 Wavelet families()

 		
 Built-in wavelets - wavelist()

 		
 Wavelet object

 		
 Using custom wavelets

 		
 ContinuousWavelet object

 		
 Signal extension modes

 		
 Naming Conventions

 		
 Padding using PyWavelets Signal Extension Modes - pad

 		
 Discrete Wavelet Transform (DWT)

 		
 Single level dwt

 		
 Multilevel decomposition using wavedec

 		
 Partial Discrete Wavelet Transform data decomposition downcoef

 		
 Maximum decomposition level - dwt_max_level, dwtn_max_level

 		
 Result coefficients length - dwt_coeff_len

 		
 Inverse Discrete Wavelet Transform (IDWT)

 		
 Single level idwt

 		
 Multilevel reconstruction using waverec

 		
 Direct reconstruction with upcoef

 		
 Overview of multilevel wavelet decompositions

 		
 Multilevel Discrete Wavelet Transform

 		
 Fully Seperable Discrete Wavelet Transform

 		
 Wavelet Packet Transform

 		
 2D Forward and Inverse Discrete Wavelet Transform

 		
 Single level dwt2

 		
 Single level idwt2

 		
 2D multilevel decomposition using wavedec2

 		
 2D multilevel reconstruction using waverec2

 		
 2D coordinate conventions

 		
 nD Forward and Inverse Discrete Wavelet Transform

 		
 Single level - dwtn

 		
 Single level - idwtn

 		
 Multilevel decomposition - wavedecn

 		
 Multilevel reconstruction - waverecn

 		
 Multilevel fully separable decomposition - fswavedecn

 		
 Multilevel fully separable reconstruction - fswaverecn

 		
 Multilevel fully separable reconstruction coeffs - FswavedecnResult

 		
 Handling DWT Coefficients

 		
 Concatenating all coefficients into a single n-d array

 		
 Splitting concatenated coefficient array back into its components

 		
 Raveling and unraveling coefficients to/from a 1D array

 		
 Multilevel: Total size of all coefficients - wavedecn_size

 		
 Multilevel: n-d coefficient shapes - wavedecn_shapes

 		
 Stationary Wavelet Transform

 		
 Multilevel 1D swt

 		
 Multilevel 2D swt2

 		
 Multilevel n-dimensional swtn

 		
 Maximum decomposition level - swt_max_level

 		
 Inverse Stationary Wavelet Transform

 		
 Multilevel 1D iswt

 		
 Multilevel 2D iswt2

 		
 Multilevel n-dimensional iswtn

 		
 Multiresolution Analysis

 		
 Multilevel 1D mra

 		
 Multilevel 2D mra2

 		
 Multilevel n-dimensional mran

 		
 Inverse Multilevel 1D imra

 		
 Inverse Multilevel 2D imra2

 		
 Inverse Multilevel n-dimensional imran

 		
 Wavelet Packets

 		
 BaseNode - a common interface of WaveletPacket, WaveletPacket2D and WaveletPacketND

 		
 WaveletPacket and Node

 		
 WaveletPacket2D and Node2D

 		
 WaveletPacketND and NodeND

 		
 Continuous Wavelet Transform (CWT)

 		
 Single level - cwt

 		
 Continuous Wavelet Families

 		
 Choosing the scales for cwt

 		
 Thresholding functions

 		
 Thresholding

 		
 Other functions

 		
 Integrating wavelet functions

 		
 Central frequency of psi wavelet function

 		
 Quadrature Mirror Filter

 		
 Orthogonal Filter Banks

 		
 Example Datasets

 		
 Usage examples

 		
 The Wavelet object

 		
 Wavelet families and builtin Wavelets names

 		
 Creating Wavelet objects

 		
 Wavelet properties

 		
 And now… the wavefun!

 		
 Signal Extension Modes

 		
 DWT and IDWT

 		
 Discrete Wavelet Transform

 		
 Inverse Discrete Wavelet Transform

 		
 More Examples

 		
 Tips & tricks

 		
 Multilevel DWT, IDWT and SWT

 		
 Multilevel DWT decomposition

 		
 Multilevel IDWT reconstruction

 		
 Multilevel SWT decomposition

 		
 Wavelet Packets

 		
 Import pywt

 		
 Create Wavelet Packet structure

 		
 Traversing WP tree:

 		
 Reconstructing data from Wavelet Packets:

 		
 Removing nodes from Wavelet Packet tree:

 		
 Lazy evaluation:

 		
 2D Wavelet Packets

 		
 Import pywt

 		
 Create 2D Wavelet Packet structure

 		
 Traversing WP tree:

 		
 Reconstructing data from Wavelet Packets:

 		
 Lazy evaluation:

 		
 Gotchas

 		
 Contributing

 		
 History

 		
 Development guide

 		
 PyWavelets Code of Conduct

 		
 Introduction

 		
 Specific Guidelines

 		
 Diversity Statement

 		
 Reporting Guidelines

 		
 Incident reporting resolution & Code of Conduct enforcement

 		
 Endnotes

 		
 Preparing Windows build environment

 		
 Installing Windows SDK C/C++ compiler

 		
 MinGW C/C++ compiler

 		
 Next steps

 		
 Preparing Linux build environment

 		
 Installing basic build tools

 		
 Next steps

 		
 Installing build dependencies

 		
 Setting up Python virtual environment

 		
 Installing Cython

 		
 Installing numpy

 		
 Installing Sphinx

 		
 Building and installing PyWavelets

 		
 Installing from source code

 		
 Installing a development version

 		
 Installing a regular release from PyPi

 		
 Testing

 		
 Continous integration with Travis-CI

 		
 Running tests locally

 		
 Running tests with Tox

 		
 Guidelines for Releasing PyWavelets

 		
 Updating the release notes

 		
 Tag the release

 		
 Build Windows, OS X and Linux wheels and upload to PyPI

 		
 Create the source distribution

 		
 Upload the release to PyPI

 		
 Update conda-forge

 		
 Create the release on GitHub

 		
 Announcing the release

 		
 Prepare for continued development

 		
 Something not working?

 		
 Release Notes

 		
 PyWavelets 0.3.0 Release Notes

 		
 New features

 		
 Backwards incompatible changes

 		
 Other changes

 		
 Authors

 		
 PyWavelets 0.4.0 Release Notes

 		
 New features

 		
 Deprecated features

 		
 Backwards incompatible changes

 		
 Bugs Fixed

 		
 Other changes

 		
 Authors

 		
 PyWavelets 0.5.0 Release Notes

 		
 New features

 		
 Deprecated features

 		
 Backwards incompatible changes

 		
 Bugs Fixed

 		
 Other changes

 		
 Authors

 		
 PyWavelets 0.5.1 Release Notes

 		
 Bugs Fixed

 		
 Authors

 		
 PyWavelets 0.5.2 Release Notes

 		
 Bugs Fixed

 		
 Authors

 		
 PyWavelets 1.0.0 Release Notes

 		
 New features

 		
 Deprecated features

 		
 Backwards incompatible changes

 		
 Bugs Fixed

 		
 Other changes

 		
 Authors

 		
 PyWavelets 1.0.1 Release Notes

 		
 Bugs Fixed

 		
 Authors

 		
 PyWavelets 1.0.2 Release Notes

 		
 Bugs Fixed

 		
 Other Changes

 		
 Authors

 		
 PyWavelets 1.0.3 Release Notes

 		
 PyWavelets 1.1.0 Release Notes

 		
 New features

 		
 Backwards incompatible changes

 		
 Bugs Fixed

 		
 Other changes

 		
 Authors

 		
 PyWavelets 1.1.1 Release Notes

 		
 PyWavelets 1.2.0 Release Notes

 		
 New features

 		
 Backwards incompatible changes

 		
 Bugs Fixed

 		
 Other changes

 		
 Authors

_images/plot_thresholds.png
thresholded value

— soft (0.5)
—— hard (0.5)
—— non-neg. garrote (0.5)

thresholded value

soft (0.5)
hard (0.5)
firm(0.5, 1)
firm(0.5, 2)
firm(0.5, 4)

2 o
input value

o
input value

_images/pywt.png
“build passing

_images/plot_boundary_modes.png
symmetric periodic
- B wf o] &) o)~
. 4ele oo oo 4 . .« 9 .
2 2
T r
0 10 20 30 40 0 10 20 30 40 0 1 20 30 40
antisymmetric periodization
10
) -ﬁ' -,\ A‘ A‘ -~ -~ A‘
5 s 5 15 K
| o N N R
2
e " -5 r 3
0 10 20 30 40 3 20 2
. 4
. 2
2
— P[P [N

_images/plot_mallat_2d.png
1 level 2 level 3 level

decomposition decomposition decomposition
aaa | aah
aa ah ah
aav | aad
a h h h
av ad av ad
v d v d v d

Coefficients Coefficients Coefficients
Image (1 level) (2 level) (3 level)

_static/ajax-loader.gif

_static/comment-bright.png

pyplots/plot_thresholds.png
thresholded value

— soft (0.5)
—— hard (0.5)
—— non-neg. garrote (0.5)

thresholded value

soft (0.5)
hard (0.5)
firm(0.5, 1)
firm(0.5, 2)
firm(0.5, 4)

2 o
input value

o
input value

_static/comment-close.png

_static/comment.png

_static/down.png

_static/comments.png

_static/down-pressed.png

_static/minus.png

_static/page_edit.png

_static/file.png

_static/github.png

_static/twitter.png
(18

_static/plus.png

_static/wave.png

_static/up-pressed.png

_static/up.png

